\begin{tabular}{|l|c|c|c|l|}
\hline
\multirow{2}{*}{Trial} & \multicolumn{2}{|c|}{Burette reading} & Volume [tex]$(ml)$[/tex] added [tex]$(NaOH)$[/tex] & Concentration [tex]$(M) HCl$[/tex] \\
\cline {2-5}
& Initial & Final & & \\
\hline
1 & 0.00 & 24.10 & 24.10 & \\
\hline
2 & 24.10 & 47.20 & 23.10 & \\
\hline
3 & 0.00 & 23.70 & 23.70 & \\
\hline
\end{tabular}



Answer :

Let's solve the problem step by step based on the given data.

### Step 1: Analyze Burette Readings

We will calculate the volumes of [tex]\( NaOH \)[/tex] added for each trial:

#### Trial 1:
- Initial burette reading: [tex]\( 0.00 \, ml \)[/tex]
- Final burette reading: [tex]\( 24.10 \, ml \)[/tex]
- Volume added: [tex]\( 24.10 \, ml - 0.00 \, ml = 24.10 \, ml \)[/tex]

#### Trial 2:
- Initial burette reading: [tex]\( 24.10 \, ml \)[/tex]
- Final burette reading: [tex]\( 47.20 \, ml \)[/tex]
- Volume added: [tex]\( 47.20 \, ml - 24.10 \, ml = 23.10 \, ml \)[/tex]

#### Trial 3:
- Initial burette reading: [tex]\( 0.00 \, ml \)[/tex]
- Final burette reading: [tex]\( 23.70 \, ml \)[/tex]
- Volume added: [tex]\( 23.70 \, ml - 0.00 \, ml = 23.70 \, ml \)[/tex]

### Step 2: Collate the Volumes Added

Summarize the volumes added for each trial:

- Trial 1: [tex]\( 24.10 \, ml \)[/tex]
- Trial 2: [tex]\( 23.10 \, ml \)[/tex]
- Trial 3: [tex]\( 23.70 \, ml \)[/tex]

The volumes added are:
[tex]\[ [24.1, 23.1, 23.7] \][/tex]

### Step 3: Calculate the Total Volume Added

The total volume of [tex]\( NaOH \)[/tex] added is the sum of the volumes from all three trials:
[tex]\[ 24.10 \, ml + 23.10 \, ml + 23.70 \, ml = 70.90 \, ml \][/tex]

### Final Result:

- Volumes of [tex]\( NaOH \)[/tex] added in each trial: [tex]\([24.1, 23.1, 23.7] \, ml\)[/tex]
- Total volume of [tex]\( NaOH \)[/tex] added: [tex]\( 70.9 \, ml \)[/tex]

Thus, we have our detailed, step-by-step solution:

1. For Trial 1, the volume added is [tex]\( 24.10 \, ml \)[/tex].
2. For Trial 2, the volume added is [tex]\( 23.10 \, ml \)[/tex].
3. For Trial 3, the volume added is [tex]\( 23.70 \, ml \)[/tex].
4. The total volume of [tex]\( NaOH \)[/tex] added across all trials is [tex]\( 70.90 \, ml \)[/tex].

This concludes the comprehensive solution to the given question.