Certainly! Let's solve the equation step-by-step.
The given equation is:
[tex]\[
4(5x + 3) = 14x + 30
\][/tex]
1. Distribute the 4 on the left-hand side:
[tex]\[
4 \cdot 5x + 4 \cdot 3 = 14x + 30
\][/tex]
[tex]\[
20x + 12 = 14x + 30
\][/tex]
2. Move all terms involving [tex]\( x \)[/tex] to one side and constant terms to the other side:
[tex]\[
20x + 12 - 14x = 14x + 30 - 14x
\][/tex]
[tex]\[
20x - 14x + 12 = 30
\][/tex]
[tex]\[
6x + 12 = 30
\][/tex]
3. Isolate the term involving [tex]\( x \)[/tex]:
[tex]\[
6x + 12 - 12 = 30 - 12
\][/tex]
[tex]\[
6x = 18
\][/tex]
4. Solve for [tex]\( x \)[/tex]:
[tex]\[
x = \frac{18}{6}
\][/tex]
[tex]\[
x = 3
\][/tex]
Therefore, the solution to the equation [tex]\( 4(5x + 3) = 14x + 30 \)[/tex] is
[tex]\[
\boxed{x = 3}
\][/tex]
Given the multiple-choice options, the correct answer is:
A. [tex]\( x = 3 \)[/tex]