What is the solution to this equation?

[tex]\[4(5x + 3) = 14x + 30\][/tex]

A. [tex]\(x = 3\)[/tex]

B. [tex]\(x = -7\)[/tex]

C. [tex]\(x = -3\)[/tex]

D. [tex]\(x = 7\)[/tex]



Answer :

Certainly! Let's solve the equation step-by-step.

The given equation is:
[tex]\[ 4(5x + 3) = 14x + 30 \][/tex]

1. Distribute the 4 on the left-hand side:
[tex]\[ 4 \cdot 5x + 4 \cdot 3 = 14x + 30 \][/tex]
[tex]\[ 20x + 12 = 14x + 30 \][/tex]

2. Move all terms involving [tex]\( x \)[/tex] to one side and constant terms to the other side:
[tex]\[ 20x + 12 - 14x = 14x + 30 - 14x \][/tex]
[tex]\[ 20x - 14x + 12 = 30 \][/tex]
[tex]\[ 6x + 12 = 30 \][/tex]

3. Isolate the term involving [tex]\( x \)[/tex]:
[tex]\[ 6x + 12 - 12 = 30 - 12 \][/tex]
[tex]\[ 6x = 18 \][/tex]

4. Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{18}{6} \][/tex]
[tex]\[ x = 3 \][/tex]

Therefore, the solution to the equation [tex]\( 4(5x + 3) = 14x + 30 \)[/tex] is
[tex]\[ \boxed{x = 3} \][/tex]

Given the multiple-choice options, the correct answer is:
A. [tex]\( x = 3 \)[/tex]