Write [tex]\frac{x+5 x^3}{\sqrt{x}}[/tex] in the form [tex]x^m + 5 x^n[/tex], where [tex]m[/tex] and [tex]n[/tex] are constants.



Answer :

Certainly! Let's simplify the given expression [tex]\(\frac{x + 5 x^3}{\sqrt{x}}\)[/tex].

First, we can break the fraction into two separate terms:

[tex]\[ \frac{x + 5 x^3}{\sqrt{x}} = \frac{x}{\sqrt{x}} + \frac{5 x^3}{\sqrt{x}}. \][/tex]

Now simplify each term individually.

1. Simplify the first term [tex]\(\frac{x}{\sqrt{x}}\)[/tex]:
[tex]\[ \frac{x}{\sqrt{x}} = \frac{x}{x^{1/2}} = x^{1 - 1/2} = x^{1/2}. \][/tex]

2. Simplify the second term [tex]\(\frac{5 x^3}{\sqrt{x}}\)[/tex]:
[tex]\[ \frac{5 x^3}{\sqrt{x}} = \frac{5 x^3}{x^{1/2}} = 5 x^{3 - 1/2} = 5 x^{5/2}. \][/tex]

So, combining these results, we get:

[tex]\[ \frac{x + 5 x^3}{\sqrt{x}} = x^{1/2} + 5 x^{5/2}. \][/tex]

In this form, [tex]\(m = \frac{1}{2}\)[/tex] and [tex]\(n = \frac{5}{2}\)[/tex]. Therefore, the simplified expression is:

[tex]\[ x^{1/2} + 5 x^{5/2}. \][/tex]