Choose the correct product of [tex]$(7x - 3)(7x + 3)$[/tex].

A. [tex]49x^2 + 42x + 9[/tex]
B. [tex]49x^2 - 42x + 9[/tex]
C. [tex]49x^2 - 9[/tex]
D. [tex]49x^2 + 9[/tex]



Answer :

To determine the correct product of [tex]\((7x - 3)(7x + 3)\)[/tex], we need to recognize that this is a special binomial product known as the difference of squares.

The difference of squares states that:

[tex]\[ (a - b)(a + b) = a^2 - b^2 \][/tex]

Here, [tex]\(a = 7x\)[/tex] and [tex]\(b = 3\)[/tex]. Applying the difference of squares formula, we get:

[tex]\[ (7x - 3)(7x + 3) = (7x)^2 - (3)^2 \][/tex]

Now, we need to compute each squared term:

1. [tex]\((7x)^2\)[/tex]:
[tex]\[ (7x)^2 = 7^2 \cdot x^2 = 49x^2 \][/tex]

2. [tex]\((3)^2\)[/tex]:
[tex]\[ (3)^2 = 9 \][/tex]

Putting these results together, we have:

[tex]\[ (7x - 3)(7x + 3) = 49x^2 - 9 \][/tex]

Therefore, the correct product of [tex]\((7x - 3)(7x + 3)\)[/tex] is:
[tex]\[ 49x^2 - 9 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{49x^2 - 9} \][/tex]