Choose the correct simplification of the expression [tex]\left(6 x^2 y\right)^2\left(y^2\right)^3[/tex].

A. [tex]12 x^4 y^8[/tex]
B. [tex]36 x^4 y^8[/tex]
C. [tex]12 x^2 y^7[/tex]
D. [tex]36 x^4 y^5[/tex]



Answer :

Let's simplify the given expression step-by-step. The expression we need to simplify is:

[tex]\[ \left(6 x^2 y \right)^2 \left(y^2\right)^3 \][/tex]

### Step 1: Expand [tex]\(\left(6 x^2 y \right)^2\)[/tex]

First, look at [tex]\(\left(6 x^2 y \right)^2\)[/tex]. When squaring a product, we square each factor separately:

[tex]\[ \left(6 x^2 y \right)^2 = (6)^2 \cdot \left(x^2\right)^2 \cdot (y)^2 \][/tex]

Simplifying each part gives us:

[tex]\[ (6)^2 = 36 \][/tex]
[tex]\[ \left(x^2\right)^2 = x^{2 \times 2} = x^4 \][/tex]
[tex]\[ (y)^2 = y^2 \][/tex]

So,

[tex]\[ \left(6 x^2 y \right)^2 = 36 x^4 y^2 \][/tex]

### Step 2: Expand [tex]\(\left(y^2\right)^3\)[/tex]

Next, focus on [tex]\(\left(y^2\right)^3\)[/tex]. When raising a power to another power, we multiply the exponents:

[tex]\[ \left(y^2\right)^3 = y^{2 \times 3} = y^6 \][/tex]

### Step 3: Combine the Results

Now, multiply the results from Step 1 and Step 2:

[tex]\[ 36 x^4 y^2 \cdot y^6 \][/tex]

Combine the [tex]\(y\)[/tex] terms by adding their exponents:

[tex]\[ 36 x^4 y^{2+6} = 36 x^4 y^8 \][/tex]

### Conclusion

The simplified expression is:

[tex]\[ 36 x^4 y^8 \][/tex]

Thus, the correct option is:

[tex]\[ \boxed{36 x^4 y^8} \][/tex]