Choose the correct product of [tex]$(3x - 8)^2$[/tex].

A. [tex]9x^2 + 64[/tex]
B. [tex]9x^2 - 48x + 64[/tex]
C. [tex]9x^2 + 48x + 64[/tex]
D. [tex]9x^2 - 64[/tex]



Answer :

To determine the correct product of [tex]\((3x - 8)^2\)[/tex], let's expand the expression step by step using the binomial theorem or the formula for the square of a binomial, which is given by:

[tex]\[ (a - b)^2 = a^2 - 2ab + b^2 \][/tex]

Here, [tex]\(a = 3x\)[/tex] and [tex]\(b = 8\)[/tex].

1. Square the first term ([tex]\(a^2\)[/tex]):
[tex]\[ (3x)^2 = 9x^2 \][/tex]

2. Multiply the two terms together and double the product ([tex]\(-2ab\)[/tex]):
[tex]\[ -2 \cdot (3x) \cdot 8 = -48x \][/tex]

3. Square the second term ([tex]\(b^2\)[/tex]):
[tex]\[ 8^2 = 64 \][/tex]

Combining all these terms, we get:
[tex]\[ 9x^2 - 48x + 64 \][/tex]

So, the correct product of [tex]\((3x - 8)^2\)[/tex] is:

[tex]\[ 9x^2 - 48x + 64 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{9x^2 - 48x + 64} \][/tex]