Choose the correct sum of the polynomials:

[tex]\[
\left(3x^3 - 5x - 8\right) + \left(5x^3 + 7x + 3\right)
\][/tex]

A. [tex]\(2x^3 - 12x - 11\)[/tex]

B. [tex]\(2x^3 + 12x - 5\)[/tex]

C. [tex]\(8x^3 + 2x + 5\)[/tex]

D. [tex]\(8x^3 + 2x - 5\)[/tex]



Answer :

To find the sum of the polynomials [tex]\((3x^3 - 5x - 8) + (5x^3 + 7x + 3)\)[/tex], we will add the corresponding coefficients of each term.

1. Identify and arrange the terms of the polynomials:

- [tex]\(3x^3 - 5x - 8\)[/tex]
- [tex]\(5x^3 + 7x + 3\)[/tex]

2. Add the coefficients of the [tex]\(x^3\)[/tex] terms:
[tex]\[ 3 + 5 = 8 \][/tex]
Therefore, the [tex]\(x^3\)[/tex] term in the sum is [tex]\(8x^3\)[/tex].

3. Add the coefficients of the [tex]\(x\)[/tex] terms:
[tex]\[ -5 + 7 = 2 \][/tex]
Therefore, the [tex]\(x\)[/tex] term in the sum is [tex]\(2x\)[/tex].

4. Add the constant terms:
[tex]\[ -8 + 3 = -5 \][/tex]
Therefore, the constant term in the sum is [tex]\(-5\)[/tex].

Combining these results, we get the polynomial:
[tex]\[ 8x^3 + 2x - 5 \][/tex]

Thus, the correct sum of the polynomials [tex]\((3x^3 - 5x - 8) + (5x^3 + 7x + 3)\)[/tex] is [tex]\[ 8x^3 + 2x - 5. \][/tex]

Hence, the correct answer is:
[tex]\[ 8x^3 + 2x - 5. \][/tex]