15. (06.02 MC)

Simplify [tex]\left(8x^2 - 1 + 2x^3\right) - \left(7x^3 - 3x^2 + 1\right)[/tex].

A. [tex]-5x^3 + 11x^2 - 2[/tex]
B. [tex]x^3 - 2x^2 - x^3[/tex]
C. [tex]5x^3 - 11x^2 + 2[/tex]
D. [tex]x^3 + 2x^2 + x^3[/tex]



Answer :

Certainly! Let's simplify the expression [tex]\((8 x^2 - 1 + 2 x^3) - (7 x^3 - 3 x^2 + 1)\)[/tex] step by step.

1. Write down the original expression:
[tex]\[ (8x^2 - 1 + 2x^3) - (7x^3 - 3x^2 + 1) \][/tex]

2. Distribute the negative sign across the second polynomial:
[tex]\[ 8x^2 - 1 + 2x^3 - 7x^3 + 3x^2 - 1 \][/tex]

3. Combine like terms:
- Combine the [tex]\(x^3\)[/tex] terms:
[tex]\[ 2x^3 - 7x^3 = -5x^3 \][/tex]
- Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[ 8x^2 + 3x^2 = 11x^2 \][/tex]
- Combine the constant terms:
[tex]\[ -1 - 1 = -2 \][/tex]

4. Write the simplified expression:
[tex]\[ -5x^3 + 11x^2 - 2 \][/tex]

Thus, the simplified expression is:
[tex]\[ -5x^3 + 11x^2 - 2 \][/tex]

So, the correct option is:
[tex]\[ -5x^3 + 11x^2 - 2 \][/tex]