Answer :
To tackle the given problem systematically, we will address each of the sub-questions step-by-step. In this case, we are dealing with a perfectly competitive market described by the total cost (TC) and price (P) functions, and we need to calculate several economic metrics.
### 11. In a perfectly competitive market, given [tex]\( TC = 4Q^2 - 48Q + 100 \)[/tex] and [tex]\( P = 20 \)[/tex]:
#### A) Calculate Total Revenue (TR)
Total Revenue (TR) is calculated as the product of the price (P) and the quantity (Q) sold.
[tex]\[ TR = P \cdot Q = 20 \cdot Q = 20Q \][/tex]
#### B) Calculate Average Cost (AC)
Average Cost (AC) is calculated by dividing the total cost (TC) by the quantity (Q).
[tex]\[ AC = \frac{TC}{Q} = \frac{4Q^2 - 48Q + 100}{Q} = 4Q - 48 + \frac{100}{Q} \][/tex]
#### C) Calculate Marginal Cost (MC)
Marginal Cost (MC) is calculated by differentiating the total cost (TC) with respect to the quantity (Q).
[tex]\[ MC = \frac{d(TC)}{dQ} = \frac{d(4Q^2 - 48Q + 100)}{dQ} = 8Q - 48 \][/tex]
#### D) Calculate Profit ([tex]\(\pi\)[/tex])
Profit ([tex]\(\pi\)[/tex]) is calculated as total revenue (TR) minus total cost (TC).
[tex]\[ \pi = TR - TC = 20Q - (4Q^2 - 48Q + 100) \][/tex]
[tex]\[ \pi = 20Q - 4Q^2 + 48Q - 100 \][/tex]
[tex]\[ \pi = -4Q^2 + 68Q - 100 \][/tex]
#### E) Calculate the profit-maximizing level of output
The profit-maximizing level of output occurs where marginal cost (MC) equals the price (P).
[tex]\[ MC = P \][/tex]
[tex]\[ 8Q - 48 = 20 \][/tex]
[tex]\[ 8Q = 68 \][/tex]
[tex]\[ Q = \frac{68}{8} = 8.5 \][/tex]
So, the profit-maximizing level of output is [tex]\( Q = 8.5 \)[/tex].
#### F) Calculate the maximum profit level
We previously calculated the profit function as:
[tex]\[ \pi = -4Q^2 + 68Q - 100 \][/tex]
By substituting the profit-maximizing level of output, [tex]\( Q = 8.5 \)[/tex], we find the maximum profit:
[tex]\[ \pi = -4(8.5)^2 + 68(8.5) - 100 \][/tex]
[tex]\[ \pi = -4(72.25) + 68(8.5) - 100 \][/tex]
[tex]\[ \pi = -289 + 578 - 100 \][/tex]
[tex]\[ \pi = 189 \][/tex]
So, the maximum profit is 189.
### Summary of Results:
A) Total Revenue (TR) = [tex]\( 20Q \)[/tex]
B) Average Cost (AC) = [tex]\( 4Q - 48 + \frac{100}{Q} \)[/tex]
C) Marginal Cost (MC) = [tex]\( 8Q - 48 \)[/tex]
D) Profit ([tex]\(\pi\)[/tex]) = [tex]\( -4Q^2 + 68Q - 100 \)[/tex]
E) Profit-maximizing level of output = [tex]\( Q = 8.5 \)[/tex]
F) Maximum profit = 189
### 11. In a perfectly competitive market, given [tex]\( TC = 4Q^2 - 48Q + 100 \)[/tex] and [tex]\( P = 20 \)[/tex]:
#### A) Calculate Total Revenue (TR)
Total Revenue (TR) is calculated as the product of the price (P) and the quantity (Q) sold.
[tex]\[ TR = P \cdot Q = 20 \cdot Q = 20Q \][/tex]
#### B) Calculate Average Cost (AC)
Average Cost (AC) is calculated by dividing the total cost (TC) by the quantity (Q).
[tex]\[ AC = \frac{TC}{Q} = \frac{4Q^2 - 48Q + 100}{Q} = 4Q - 48 + \frac{100}{Q} \][/tex]
#### C) Calculate Marginal Cost (MC)
Marginal Cost (MC) is calculated by differentiating the total cost (TC) with respect to the quantity (Q).
[tex]\[ MC = \frac{d(TC)}{dQ} = \frac{d(4Q^2 - 48Q + 100)}{dQ} = 8Q - 48 \][/tex]
#### D) Calculate Profit ([tex]\(\pi\)[/tex])
Profit ([tex]\(\pi\)[/tex]) is calculated as total revenue (TR) minus total cost (TC).
[tex]\[ \pi = TR - TC = 20Q - (4Q^2 - 48Q + 100) \][/tex]
[tex]\[ \pi = 20Q - 4Q^2 + 48Q - 100 \][/tex]
[tex]\[ \pi = -4Q^2 + 68Q - 100 \][/tex]
#### E) Calculate the profit-maximizing level of output
The profit-maximizing level of output occurs where marginal cost (MC) equals the price (P).
[tex]\[ MC = P \][/tex]
[tex]\[ 8Q - 48 = 20 \][/tex]
[tex]\[ 8Q = 68 \][/tex]
[tex]\[ Q = \frac{68}{8} = 8.5 \][/tex]
So, the profit-maximizing level of output is [tex]\( Q = 8.5 \)[/tex].
#### F) Calculate the maximum profit level
We previously calculated the profit function as:
[tex]\[ \pi = -4Q^2 + 68Q - 100 \][/tex]
By substituting the profit-maximizing level of output, [tex]\( Q = 8.5 \)[/tex], we find the maximum profit:
[tex]\[ \pi = -4(8.5)^2 + 68(8.5) - 100 \][/tex]
[tex]\[ \pi = -4(72.25) + 68(8.5) - 100 \][/tex]
[tex]\[ \pi = -289 + 578 - 100 \][/tex]
[tex]\[ \pi = 189 \][/tex]
So, the maximum profit is 189.
### Summary of Results:
A) Total Revenue (TR) = [tex]\( 20Q \)[/tex]
B) Average Cost (AC) = [tex]\( 4Q - 48 + \frac{100}{Q} \)[/tex]
C) Marginal Cost (MC) = [tex]\( 8Q - 48 \)[/tex]
D) Profit ([tex]\(\pi\)[/tex]) = [tex]\( -4Q^2 + 68Q - 100 \)[/tex]
E) Profit-maximizing level of output = [tex]\( Q = 8.5 \)[/tex]
F) Maximum profit = 189