Choose the correct simplification of the expression [tex]$(3x-6)(2x^2-4x-5)$[/tex].

A. [tex]$6x^3 - 24x^2 + 39x + 30$[/tex]
B. [tex][tex]$6x^3 - 24x^2 + 9x - 30$[/tex][/tex]
C. [tex]$6x^3 + 9x + 30$[/tex]
D. [tex]$6x^3 - 24x^2 + 9x + 30$[/tex]



Answer :

To simplify the expression [tex]\((3x - 6)(2x^2 - 4x - 5)\)[/tex], we can follow these steps:

1. Distribute the terms:
- Distribute [tex]\(3x\)[/tex] to each term inside the parenthesis [tex]\(2x^2 - 4x - 5\)[/tex].
[tex]\[ 3x \cdot (2x^2 - 4x - 5) = 3x \cdot 2x^2 + 3x \cdot (-4x) + 3x \cdot (-5) \][/tex]
This expands to:
[tex]\[ 3x \cdot 2x^2 = 6x^3 \][/tex]
[tex]\[ 3x \cdot (-4x) = -12x^2 \][/tex]
[tex]\[ 3x \cdot (-5) = -15x \][/tex]
So, combining these terms:
[tex]\[ 6x^3 - 12x^2 - 15x \][/tex]

- Next, distribute [tex]\(-6\)[/tex] to each term inside the parenthesis [tex]\(2x^2 - 4x - 5\)[/tex].
[tex]\[ -6 \cdot (2x^2 - 4x - 5) = -6 \cdot 2x^2 + (-6) \cdot (-4x) + (-6) \cdot (-5) \][/tex]
This expands to:
[tex]\[ -6 \cdot 2x^2 = -12x^2 \][/tex]
[tex]\[ -6 \cdot (-4x) = 24x \][/tex]
[tex]\[ -6 \cdot (-5) = 30 \][/tex]
So, combining these terms:
[tex]\[ -12x^2 + 24x + 30 \][/tex]

2. Combine all the distributed terms:
[tex]\[ (6x^3 - 12x^2 - 15x) + (-12x^2 + 24x + 30) \][/tex]
Combine like terms:
[tex]\[ 6x^3 - 12x^2 - 12x^2 - 15x + 24x + 30 \][/tex]
Simplify by combining like terms:
[tex]\[ 6x^3 - 24x^2 + 9x + 30 \][/tex]

Thus, the simplified form of the expression is:
[tex]\[ 6x^3 - 24x^2 + 9x + 30 \][/tex]

So, the correct answer is:
[tex]\[6x^3 - 24x^2 + 9x + 30.\][/tex]