Answered

Divide using polynomial long division.

[tex]\[
\left(5x^3 + 7x^2 - 26x\right) \div \left(x^2 + 2x - 4\right) =
\][/tex]

[tex]\[
\square
\][/tex]



Answer :

To divide the polynomial [tex]\( 5x^3 + 7x^2 - 26x \)[/tex] by [tex]\( x^2 + 2x - 4 \)[/tex] using polynomial long division, we follow these steps:

1. Setup and Initial Division:
Start by writing the division of polynomials in a long division format, similar to how you would with numbers.

- Dividend (numerator): [tex]\( 5x^3 + 7x^2 - 26x \)[/tex]
- Divisor (denominator): [tex]\( x^2 + 2x - 4 \)[/tex]

The term we need to focus on initially is [tex]\( \frac{5x^3}{x^2} = 5x \)[/tex].

2. First Multiplier:
Multiply the entire divisor by this initial term [tex]\( 5x \)[/tex]:

[tex]\[ (x^2 + 2x - 4) \cdot 5x = 5x^3 + 10x^2 - 20x \][/tex]

3. First Subtraction:
Subtract this result from the original dividend:

[tex]\[ (5x^3 + 7x^2 - 26x) - (5x^3 + 10x^2 - 20x) \][/tex]

Simplify:

[tex]\[ 5x^3 + 7x^2 - 26x - 5x^3 - 10x^2 + 20x = -3x^2 - 6x \][/tex]

4. Second Division:
Repeat the process with the new polynomial [tex]\( -3x^2 - 6x \)[/tex].

- Divide the first term of the result by the first term of the divisor: [tex]\( \frac{-3x^2}{x^2} = -3 \)[/tex].

5. Second Multiplier:
Multiply the entire divisor by [tex]\(-3\)[/tex]:

[tex]\[ (x^2 + 2x - 4) \cdot (-3) = -3x^2 - 6x + 12 \][/tex]

6. Second Subtraction:
Subtract this result from [tex]\( -3x^2 - 6x \)[/tex]:

[tex]\[ (-3x^2 - 6x) - (-3x^2 - 6x + 12) \][/tex]

Simplify:

[tex]\[ -3x^2 - 6x + 3x^2 + 6x - 12 = -12 \][/tex]

Each coefficient is calculated and aligned as per the typical polynomial long division steps, and the quotient and remainder are obtained after these steps.

7. Result:
The quotient from this division is [tex]\( 5x - 3 \)[/tex], and the remainder is [tex]\(-12\)[/tex].

Thus, the division of the polynomial [tex]\( 5x^3 + 7x^2 - 26x \)[/tex] by [tex]\( x^2 + 2x - 4 \)[/tex] yields:

[tex]\[ \boxed{5x - 3 \quad \text{with a remainder of} \quad -12} \][/tex]