Answered

Divide using polynomial long division.

[tex]\[ \left(x^2 + x - 17\right) \div (x - 4) = \square \][/tex]



Answer :

Sure, let's solve the division of [tex]\( x^2 + x - 17 \)[/tex] by [tex]\( x - 4 \)[/tex] using polynomial long division step-by-step.

1. Set up the division:
[tex]\[ \frac{x^2 + x - 17}{x - 4} \][/tex]

2. Divide the leading terms:
- Divide the leading term of the dividend [tex]\( x^2 \)[/tex] by the leading term of the divisor [tex]\( x \)[/tex]:
[tex]\[ \frac{x^2}{x} = x \][/tex]
- So, the first term of the quotient is [tex]\( x \)[/tex].

3. Multiply and subtract:
- Multiply [tex]\( x \)[/tex] (the quotient term) by the entire divisor [tex]\( x - 4 \)[/tex]:
[tex]\[ x \cdot (x - 4) = x^2 - 4x \][/tex]
- Subtract this from the original dividend [tex]\( x^2 + x - 17 \)[/tex]:
[tex]\[ (x^2 + x - 17) - (x^2 - 4x) = (x^2 + x - 17) - x^2 + 4x = x + 4x - 17 = 5x - 17 \][/tex]

4. Repeat with the new dividend:
- Now, the new dividend is [tex]\( 5x - 17 \)[/tex].
- Divide the leading term [tex]\( 5x \)[/tex] by the leading term of the divisor [tex]\( x \)[/tex]:
[tex]\[ \frac{5x}{x} = 5 \][/tex]
- So, the next term of the quotient is [tex]\( 5 \)[/tex].

5. Multiply and subtract again:
- Multiply [tex]\( 5 \)[/tex] (the quotient term) by the entire divisor [tex]\( x - 4 \)[/tex]:
[tex]\[ 5 \cdot (x - 4) = 5x - 20 \][/tex]
- Subtract this from the current dividend [tex]\( 5x - 17 \)[/tex]:
[tex]\[ (5x - 17) - (5x - 20) = (5x - 17) - 5x + 20 = 5x - 5x + 20 - 17 = 3 \][/tex]

6. Combine the results:
- The quotient is the sum of the terms obtained in steps 2 and 4:
[tex]\[ x + 5 \][/tex]
- The remainder is the result from the subtraction in step 5:
[tex]\[ 3 \][/tex]

So, the result of the polynomial long division is:
[tex]\[ \left(x^2 + x - 17\right) \div (x - 4) = x + 5 \text{ with a remainder of 3} \][/tex]

Written in fraction form, we have:
[tex]\[ \frac{x^2 + x - 17}{x - 4} = x + 5 + \frac{3}{x - 4} \][/tex]

Therefore, the quotient is [tex]\( x + 5 \)[/tex], and the remainder is 3.