Suppose statement [tex]$p$[/tex] is true but statement [tex]$q$[/tex] is false. Which of these compound statements are true? Check all that apply.

A. [tex]$p \wedge q$[/tex]
B. [tex]$p \vee q$[/tex]
C. [tex]$p \rightarrow q$[/tex]
D. [tex]$q \rightarrow p$[/tex]



Answer :

To determine which of the compound statements involving [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are true, let's evaluate each one step by step, given that [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is false.

1. [tex]\( p \wedge q \)[/tex] (p AND q):
- For [tex]\( p \wedge q \)[/tex] to be true, both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] need to be true.
- Since [tex]\( p \)[/tex] is true but [tex]\( q \)[/tex] is false, [tex]\( p \wedge q \)[/tex] is false.

2. [tex]\( p \vee q \)[/tex] (p OR q):
- For [tex]\( p \vee q \)[/tex] to be true, at least one of [tex]\( p \)[/tex] or [tex]\( q \)[/tex] must be true.
- Since [tex]\( p \)[/tex] is true, [tex]\( p \vee q \)[/tex] is true regardless of [tex]\( q \)[/tex].

3. [tex]\( p \rightarrow q \)[/tex] (p implies q):
- [tex]\( p \rightarrow q \)[/tex] is true unless [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is false.
- Since [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is false in our case, [tex]\( p \rightarrow q \)[/tex] is false.

4. [tex]\( q \rightarrow p \)[/tex] (q implies p):
- [tex]\( q \rightarrow p \)[/tex] is true unless [tex]\( q \)[/tex] is true and [tex]\( p \)[/tex] is false.
- Since [tex]\( q \)[/tex] is false, [tex]\( q \rightarrow p \)[/tex] is true regardless of [tex]\( p \)[/tex].

Summarizing the evaluations:
- [tex]\( p \wedge q \)[/tex] is false.
- [tex]\( p \vee q \)[/tex] is true.
- [tex]\( p \rightarrow q \)[/tex] is false.
- [tex]\( q \rightarrow p \)[/tex] is true.

Thus, given [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is false, the compound statements that are true are:

- [tex]\( p \vee q \)[/tex]
- [tex]\( q \rightarrow p \)[/tex]