Answered

3. If [tex]$x=\frac{1}{2}$[/tex], [tex]$y=-\frac{2}{3}$[/tex], and [tex][tex]$z=\frac{1}{4}$[/tex][/tex], verify that [tex]$x \times (y \times z) = (x \times y) \times z$[/tex].



Answer :

Certainly! Let's verify if the equation [tex]\( x \times (y \times z) = (x \times y) \times z \)[/tex] holds true for the given values [tex]\( x = \frac{1}{2} \)[/tex], [tex]\( y = -\frac{2}{3} \)[/tex], and [tex]\( z = \frac{1}{4} \)[/tex].

### Step-by-Step Solution

1. Calculate [tex]\( y \times z \)[/tex]:

[tex]\[ y \times z = \left(-\frac{2}{3}\right) \times \left(\frac{1}{4}\right) \][/tex]

Multiplying the fractions, we get:

[tex]\[ y \times z = \frac{-2 \times 1}{3 \times 4} = \frac{-2}{12} = -\frac{1}{6} \][/tex]

2. Calculate [tex]\( x \times (y \times z) \)[/tex]:

Now that we have [tex]\( y \times z = -\frac{1}{6} \)[/tex], we can calculate:

[tex]\[ x \times (y \times z) = \frac{1}{2} \times \left(-\frac{1}{6}\right) \][/tex]

Multiplying the fractions, we get:

[tex]\[ x \times (y \times z) = \frac{1 \times -1}{2 \times 6} = \frac{-1}{12} = -\frac{1}{12} \][/tex]

3. Calculate [tex]\( x \times y \)[/tex]:

[tex]\[ x \times y = \left(\frac{1}{2}\right) \times \left(-\frac{2}{3}\right) \][/tex]

Multiplying the fractions, we get:

[tex]\[ x \times y = \frac{1 \times -2}{2 \times 3} = \frac{-2}{6} = -\frac{1}{3} \][/tex]

4. Calculate [tex]\( (x \times y) \times z \)[/tex]:

Now that we have [tex]\( x \times y = -\frac{1}{3} \)[/tex], we can calculate:

[tex]\[ (x \times y) \times z = \left(-\frac{1}{3}\right) \times \frac{1}{4} \][/tex]

Multiplying the fractions, we get:

[tex]\[ (x \times y) \times z = \frac{-1 \times 1}{3 \times 4} = \frac{-1}{12} = -\frac{1}{12} \][/tex]

5. Comparison:

We can now compare the two results:
[tex]\[ x \times (y \times z) = -\frac{1}{12} \][/tex]
[tex]\[ (x \times y) \times z = -\frac{1}{12} \][/tex]

Since the results are equal, we have verified that:

[tex]\[ x \times (y \times z) = (x \times y) \times z \][/tex]

Therefore, the equality [tex]\( x \times (y \times z) = (x \times y) \times z \)[/tex] holds true for the given values [tex]\( x = \frac{1}{2} \)[/tex], [tex]\( y = -\frac{2}{3} \)[/tex], and [tex]\( z = \frac{1}{4} \)[/tex].