A shopkeeper sells an article at a [tex]\(22\%\)[/tex] profit. If he bought it at a [tex]\(12\%\)[/tex] lower price and sold it at a [tex]\(25\%\)[/tex] profit, then he would get Rs. 66 less. What is the cost price of the article?

एक दुकानदार कुछ वस्तुओं को [tex]\(22\%\)[/tex] के लाभ पर बेचता है। यदि वह इन्हें [tex]\(12\%\)[/tex] कम मूल्य में खरीदता है और [tex]\(25\%\)[/tex] के लाभ पर बेचता है तब उसे 66 रु. कम मिलता है। तो वस्तुओं का लागत मूल्य क्या है?

(A) Rs. 500
(B) Rs. 550
(C) Rs. 600
(D) Rs. 625



Answer :

To solve this problem, let's denote the cost price of the article as [tex]\( Cp \)[/tex].

### Step 1: Calculate the Selling Price at 22% Profit
First, we need to understand what it means to sell the article at a 22% profit.

The selling price (SP1) in this case can be calculated as:
[tex]\[ SP1 = Cp \times (1 + \frac{22}{100}) \][/tex]
[tex]\[ SP1 = Cp \times 1.22 \][/tex]

### Step 2: Calculate the Selling Price at 25% Profit with a 12% Reduced Cost Price
Next, if the shopkeeper buys the article at a price 12% less than the original cost price and sells it at a 25% profit, we have:

The reduced cost price (RCP) is:
[tex]\[ RCP = Cp \times (1 - \frac{12}{100}) \][/tex]
[tex]\[ RCP = Cp \times 0.88 \][/tex]

The new selling price (SP2) at a 25% profit would be:
[tex]\[ SP2 = RCP \times (1 + \frac{25}{100}) \][/tex]
[tex]\[ SP2 = Cp \times 0.88 \times 1.25 \][/tex]
[tex]\[ SP2 = Cp \times 1.10 \][/tex]

### Step 3: Given the Difference in Profits
According to the problem, the difference in the profit is Rs. 66 when comparing these two scenarios:

[tex]\[ SP1 - SP2 = 66 \][/tex]

Substituting the SP values:
[tex]\[ Cp \times 1.22 - Cp \times 1.10 = 66 \][/tex]

### Step 4: Solve for Cost Price (Cp)
Let's simplify and solve this equation:

[tex]\[ Cp \times 1.22 - Cp \times 1.10 = 66 \][/tex]
[tex]\[ Cp \times (1.22 - 1.10) = 66 \][/tex]
[tex]\[ Cp \times 0.12 = 66 \][/tex]
[tex]\[ Cp = \frac{66}{0.12} \][/tex]
[tex]\[ Cp = 550 \][/tex]

Therefore, the cost price of the article is [tex]\( \text{Rs. 550} \)[/tex].

So, the correct answer is:
(B) Rs. 550