Check the corresponding rule that applies:

[tex]\[
\begin{array}{l}
\text{Digit sum of 4812} \\
2. 132 = 6 \\
3. 356 \\
3. 45072 \\
4. 78540 \\
5. 8347251 \\
\end{array}
\][/tex]



Answer :

Certainly! Let's walk through the steps for each case provided:

### Case 1: 4812

To find the digit sum of 4812, we simply add the digits together:
[tex]\[ 4 + 8 + 1 + 2 = 15 \][/tex]

So, the digit sum of 4812 is 15.

### Case 2: [tex]$2.132=6$[/tex]

This doesn't fit typical rules for digit sums, so we'll consider it a given result.

### Case 3: 356

To find the digit sum of 356, add the digits together:
[tex]\[ 3 + 5 + 6 = 14 \][/tex]

So, the digit sum of 356 is 14.

### Case 4: 45072

To find the digit sum for 45072, add the digits together:
[tex]\[ 4 + 5 + 0 + 7 + 2 = 18 \][/tex]

So, the digit sum of 45072 is 18.

### Case 5: 78540

To find the digit sum for 78540, add the digits together:
[tex]\[ 7 + 8 + 5 + 4 + 0 = 24 \][/tex]

So, the digit sum of 78540 is 24.

### Case 6: 8347251

To find the digit sum for 8347251, add the digits together:
[tex]\[ 8 + 3 + 4 + 7 + 2 + 5 + 1 = 30 \][/tex]

So, the digit sum of 8347251 is 30.

To summarize:
1. Digit sum of 4812 = 15
2. [tex]$2.132 = 6$[/tex] (given)
3. Digit sum of 356 = 14
4. Digit sum of 45072 = 18
5. Digit sum of 78540 = 24
6. Digit sum of 8347251 = 30

Those are the digit sums corresponding to the numbers provided.