Drag the tiles to the boxes to form correct pairs.

Match the pairs of equivalent expressions.

[tex]\[
\begin{array}{l}
\left(-14+\frac{3}{2} b\right)-\left(1+\frac{8}{2} b\right) \quad 4b+\frac{13}{2} \quad (5+2b)+\left(2b+\frac{3}{2}\right) \\
8b-15 \quad \left(\frac{7}{2}b-3\right)-(8+6b) \quad \frac{-5}{2}b-11 \\
(-10+b)+(7b-5) \quad -15-\frac{5}{2}b \\
\Box \longleftrightarrow \Box \\
\Box \longleftrightarrow \Box \\
\end{array}
\][/tex]



Answer :

To solve this problem, we need to pair equivalent algebraic expressions. Each of these expressions simplifies to a common form. Let's examine each:

1. [tex]\((-14+\frac{3}{2} b) - (1+\frac{8}{2} b)\)[/tex]:
Simplifies to:
[tex]\[ -14 + \frac{3}{2} b - 1 - 4b = -15 - \frac{5}{2} b \][/tex]

2. [tex]\(4b + \frac{13}{2}\)[/tex]:
This expression is already simplified:
[tex]\[ 4b + \frac{13}{2} \][/tex]

3. [tex]\((5+2b) + (2b+\frac{3}{2})\)[/tex]:
Simplifies to:
[tex]\[ 5 + 2b + 2b + \frac{3}{2} = \frac{10}{2} + 4b + \frac{3}{2} = 4b + \frac{13}{2} \][/tex]

4. [tex]\(8b - 15\)[/tex]:
This expression is already simplified:
[tex]\[ 8b - 15 \][/tex]

5. [tex]\((\frac{7}{2} b - 3) - (8 + 6b)\)[/tex]:
Simplifies to:
[tex]\[ \frac{7}{2} b - 3 - 8 - 6b = -11 - \frac{5}{2} b \][/tex]

6. [tex]\(\frac{-5}{2} b - 11\)[/tex]:
This expression is already simplified:
[tex]\[ \frac{-5}{2} b - 11 \][/tex]

7. [tex]\((-10 + b) + (7b - 5)\)[/tex]:
Simplifies to:
[tex]\[ -10 + b + 7b - 5 = 8b - 15 \][/tex]

8. [tex]\(-15 - \frac{5}{2} b\)[/tex]:
This expression is already simplified:
[tex]\[ -15 - \frac{5}{2} b \][/tex]

Now we can match the expressions that are equivalent:

1. [tex]\((-14+\frac{3}{2} b) - (1+\frac{8}{2} b) \leftrightarrow -15 - \frac{5}{2} b\)[/tex]

2. [tex]\(4b + \frac{13}{2} \leftrightarrow (5+2b) + (2b+\frac{3}{2})\)[/tex]

3. [tex]\(8b - 15 \leftrightarrow (-10+b) + (7b-5)\)[/tex]

4. [tex]\((\frac{7}{2} b - 3) - (8+6b) \leftrightarrow \frac{-5}{2} b - 11\)[/tex]

Thus, the correct pairs are:

[tex]\[ \begin{array}{c} (-14 + \frac{3}{2} b) - (1 + \frac{8}{2} b) \longleftrightarrow -15 - \frac{5}{2} b, \\ 4b + \frac{13}{2} \longleftrightarrow (5+2b) + (2b+ \frac{3}{2}), \\ 8b - 15 \longleftrightarrow (-10 + b) + (7b - 5), \\ (\frac{7}{2}b - 3) - (8 + 6b) \longleftrightarrow \frac{-5}{2}b - 11 \end{array} \][/tex]