Select the correct answer.

A light wave travels at a speed of [tex]$3.0 \times 10^8$[/tex] meters/second. If the wavelength is [tex]$7.0 \times 10^{-7}$[/tex] meters, what is the frequency of the wave?

A. [tex][tex]$2.5 \times 10^{-14}$[/tex][/tex] hertz
B. [tex]$4.3 \times 10^{14}$[/tex] hertz
C. [tex]$1.7 \times 10^{-14}$[/tex] hertz
D. [tex][tex]$5.1 \times 10^{-14}$[/tex][/tex] hertz



Answer :

To find the frequency of the wave, we can use the formula that relates the speed of light, the wavelength, and the frequency:

[tex]\[ \text{Frequency} = \frac{\text{Speed of Light}}{\text{Wavelength}} \][/tex]

Given:
- The speed of light, [tex]\( c = 3.0 \times 10^8 \)[/tex] meters/second
- The wavelength, [tex]\( \lambda = 7.0 \times 10^{-7} \)[/tex] meters

Plugging the values into the formula, we get:

[tex]\[ \text{Frequency} = \frac{3.0 \times 10^8 \, \text{m/s}}{7.0 \times 10^{-7} \, \text{m}} \][/tex]

By dividing these numbers, we find:

[tex]\[ \text{Frequency} = \frac{3.0 \times 10^8}{7.0 \times 10^{-7}} \][/tex]

This calculation yields:

[tex]\[ \text{Frequency} = 4.285714285714286 \times 10^{14} \, \text{Hz} \][/tex]

This can be approximated to:

[tex]\[ \text{Frequency} \approx 4.3 \times 10^{14} \, \text{Hz} \][/tex]

Thus, the correct answer is:

B. [tex]\( 4.3 \times 10^{14} \)[/tex] hertz