Answer :

To find the value of [tex]\( x \)[/tex] in the equation [tex]\( 4x + 8y = 40 \)[/tex] when [tex]\( y = 0.8 \)[/tex], follow these steps:

1. Substitute the given value of [tex]\( y \)[/tex] into the equation:

Given equation:
[tex]\[ 4x + 8y = 40 \][/tex]

Substitute [tex]\( y = 0.8 \)[/tex]:
[tex]\[ 4x + 8(0.8) = 40 \][/tex]

2. Calculate the value inside the parenthesis:

Compute [tex]\( 8 \times 0.8 \)[/tex]:
[tex]\[ 8 \times 0.8 = 6.4 \][/tex]

3. Substitute back into the equation:

Now the equation looks like:
[tex]\[ 4x + 6.4 = 40 \][/tex]

4. Isolate the term with [tex]\( x \)[/tex]:

Subtract 6.4 from both sides to isolate [tex]\( 4x \)[/tex]:
[tex]\[ 4x + 6.4 - 6.4 = 40 - 6.4 \][/tex]
[tex]\[ 4x = 33.6 \][/tex]

5. Solve for [tex]\( x \)[/tex]:

Divide both sides by 4:
[tex]\[ x = \frac{33.6}{4} \][/tex]

Finally, compute:
[tex]\[ x = 8.4 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 8.4 \)[/tex].

The correct choice is:
[tex]\[ \boxed{8.4} \][/tex]