Question 2 (Multiple Choice, Worth 2 points)

What are the domain and range of [tex]g(x)=\sqrt{x+3}[/tex]?

A. [tex]D: [3, \infty) \text{ and } R: [0, \infty)[/tex]
B. [tex]D: [-3, \infty) \text{ and } R: [0, \infty)[/tex]
C. [tex]D: (-3, \infty) \text{ and } R: (-\infty, 0)[/tex]



Answer :

Let's analyze the function [tex]\( g(x) = \sqrt{x + 3} \)[/tex] to determine its domain and range.

### Domain
The domain of a function is the set of all possible input values (x-values) that will produce a valid output (y-value). For the function [tex]\( g(x) = \sqrt{x + 3} \)[/tex], the expression inside the square root, [tex]\( x + 3 \)[/tex], must be non-negative because the square root of a negative number is not defined in the real number system. Therefore, we require:

[tex]\[ x + 3 \geq 0 \][/tex]

Solving this inequality for [tex]\( x \)[/tex],

[tex]\[ x \geq -3 \][/tex]

So, the domain is:

[tex]\[ D: [-3, \infty) \][/tex]

### Range
The range of a function is the set of all possible output values (y-values) it can produce. For [tex]\( g(x) = \sqrt{x + 3} \)[/tex], the square root function only produces non-negative values, starting from 0 and increasing as [tex]\( x \)[/tex] increases. Therefore, the range is:

[tex]\[ R: [0, \infty) \][/tex]

### Multiple Choice Answer
Given the given choices:
1. [tex]\( D: [3, \infty) \)[/tex] and [tex]\( R: [0, \infty) \)[/tex]
2. [tex]\( D: [-3, \infty) \)[/tex] and [tex]\( R: [0, \infty) \)[/tex]
3. [tex]\( D: (-3, \infty) \)[/tex] and [tex]\( R: (-\infty, 0) \)[/tex]

The correct domain and range for [tex]\( g(x) = \sqrt{x + 3} \)[/tex] are:

[tex]\[ D: [-3, \infty) \][/tex]
[tex]\[ R: [0, \infty) \][/tex]

Therefore, the correct answer is the second choice:

[tex]\[ \boxed{D: [-3, \infty) \text{ and } R: [0, \infty)} \][/tex]