What is the solution to the quadratic inequality?

[tex]\[ 8x^2 \geq 3 + 10x \][/tex]

A. [tex]\(\left(-\infty, -\frac{1}{4}\right] \cup \left[\frac{3}{2}, \infty\right)\)[/tex]

B. [tex]\(\left(-\infty, -\frac{3}{2}\right] \cup \left[\frac{1}{4}, \infty\right)\)[/tex]

C. [tex]\(\left[-\frac{1}{4}, \frac{3}{2}\right]\)[/tex]

D. [tex]\(\left[-\frac{3}{2}, \frac{1}{4}\right]\)[/tex]



Answer :

To solve the quadratic inequality [tex]\( 8x^2 \geq 3 + 10x \)[/tex], we should follow these steps:

1. Rewrite the Inequality in Standard Form:
Start by moving all terms to one side of the inequality:
[tex]\[ 8x^2 - 10x - 3 \geq 0 \][/tex]

2. Find the Roots of the Corresponding Equation:
To identify the critical points, we solve the equation:
[tex]\[ 8x^2 - 10x - 3 = 0 \][/tex]
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 8 \)[/tex], [tex]\( b = -10 \)[/tex], and [tex]\( c = -3 \)[/tex], we find the roots:
[tex]\[ x = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 8 \cdot (-3)}}{2 \cdot 8} = \frac{10 \pm \sqrt{100 + 96}}{16} = \frac{10 \pm \sqrt{196}}{16} = \frac{10 \pm 14}{16} \][/tex]
So the roots are:
[tex]\[ x = \frac{24}{16} = \frac{3}{2} \quad \text{and} \quad x = \frac{-4}{16} = -\frac{1}{4} \][/tex]

3. Determine the Intervals:
The roots divide the number line into three intervals:
[tex]\[ (-\infty, -\frac{1}{4}), \quad \left(-\frac{1}{4}, \frac{3}{2}\right), \quad \text{and} \quad \left(\frac{3}{2}, \infty\right) \][/tex]

4. Test Values in Each Interval:
Check the sign of [tex]\( 8x^2 - 10x - 3 \)[/tex] in each interval:

- For [tex]\( x \in (-\infty, -\frac{1}{4}) \)[/tex], choose [tex]\( x = -1 \)[/tex]:
[tex]\[ 8(-1)^2 - 10(-1) - 3 = 8 + 10 - 3 = 15 > 0 \][/tex]
- For [tex]\( x \in \left(-\frac{1}{4}, \frac{3}{2}\right) \)[/tex], choose [tex]\( x = 0 \)[/tex]:
[tex]\[ 8(0)^2 - 10(0) - 3 = -3 < 0 \][/tex]
- For [tex]\( x \in \left(\frac{3}{2}, \infty\right) \)[/tex], choose [tex]\( x = 2 \)[/tex]:
[tex]\[ 8(2)^2 - 10(2) - 3 = 32 - 20 - 3 = 9 > 0 \][/tex]

5. Include the Endpoints:
Since the inequality is [tex]\(\geq\)[/tex], the critical points where [tex]\(8x^2 - 10x - 3 = 0\)[/tex] (i.e., [tex]\( x = -\frac{1}{4} \)[/tex] and [tex]\( x = \frac{3}{2} \)[/tex]) are included in the solution set.

6. Combine the Intervals:
The solution to the inequality [tex]\( 8x^2 \geq 3 + 10x \)[/tex] is therefore:
[tex]\[ (-\infty, -\frac{1}{4}] \cup [\frac{3}{2}, \infty) \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{(-\infty, -\frac{1}{4}] \cup [\frac{3}{2}, \infty)} \][/tex]