Answer :
Let's go through the steps to solve the problem step-by-step.
### Step 1: Organize the Data
We have the following data points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 1047 \\ \hline 1 & 1020 \\ \hline 2 & 989 \\ \hline 3 & 943 \\ \hline 4 & 964 \\ \hline 5 & 880 \\ \hline \end{array} \][/tex]
### Step 2: Calculate the Means
First, we calculate the mean of x and y:
[tex]\[ \bar{x} = \frac{0 + 1 + 2 + 3 + 4 + 5}{6} = \frac{15}{6} = 2.5 \][/tex]
[tex]\[ \bar{y} = \frac{1047 + 1020 + 989 + 943 + 964 + 880}{6} = \frac{5843}{6} \approx 973.8 \][/tex]
### Step 3: Calculate the Slope (m) and y-Intercept (b)
The formula for the slope [tex]\( m \)[/tex] of the least squares regression line is:
[tex]\[ m = \frac{\sum{(x_i - \bar{x})(y_i - \bar{y})}}{\sum{(x_i - \bar{x})^2}} \][/tex]
Let's calculate each part step-by-step.
#### Numerator Calculation:
[tex]\[ \sum{(x_i - \bar{x})(y_i - \bar{y})} \][/tex]
[tex]\[ = (0 - 2.5)(1047 - 973.8) + (1 - 2.5)(1020 - 973.8) + (2 - 2.5)(989 - 973.8) + (3 - 2.5)(943 - 973.8) + (4 - 2.5)(964 - 973.8) + (5 - 2.5)(880 - 973.8) \][/tex]
[tex]\[ = (-2.5 \times 73.2) + (-1.5 \times 46.2) + (-0.5 \times 15.2) + (0.5 \times (-30.8)) + (1.5 \times (-9.8)) + (2.5 \times (-93.8)) \][/tex]
[tex]\[ = -183 + -69.3 + -7.6 + -15.4 + -14.7 + -234.5 = -524.5 \][/tex]
#### Denominator Calculation:
[tex]\[ \sum{(x_i - \bar{x})^2} = (0 - 2.5)^2 + (1 - 2.5)^2 + (2 - 2.5)^2 + (3 - 2.5)^2 + (4 - 2.5)^2 + (5 - 2.5)^2 \][/tex]
[tex]\[ = 6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25 = 17.5 \][/tex]
#### Slope (m):
[tex]\[ m = \frac{-524.5}{17.5} \approx -30 \][/tex]
#### y-Intercept (b):
[tex]\[ b = \bar{y} - m\bar{x} \][/tex]
[tex]\[ b = 973.8 - (-30 \times 2.5) = 973.8 + 75 = 1048.8 \][/tex]
### Step 4: Write the Linear Regression Equation
The linear regression equation is:
[tex]\[ y = mx + b \][/tex]
Substituting the calculated [tex]\( m \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ y = -30x + 1048.8 \][/tex]
Round the coefficients to the nearest tenth:
[tex]\[ y = -30x + 1048.8 \][/tex]
### Step 5: Project the Number of New Cases for 2026
To find the number of new cases for 2026, we need to calculate [tex]\( x \)[/tex] for the year 2026.
Since [tex]\( x \)[/tex] represents the number of years since 2014:
[tex]\[ x = 2026 - 2014 = 12 \][/tex]
Substitute [tex]\( x = 12 \)[/tex] into the linear regression equation:
[tex]\[ y = -30(12) + 1048.8 \][/tex]
[tex]\[ y = -360 + 1048.8 \][/tex]
[tex]\[ y = 688.8 \][/tex]
Rounding to the nearest whole number, the projected number of new cases for 2026 is:
[tex]\[ \boxed{689} \][/tex]
### Step 1: Organize the Data
We have the following data points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & 1047 \\ \hline 1 & 1020 \\ \hline 2 & 989 \\ \hline 3 & 943 \\ \hline 4 & 964 \\ \hline 5 & 880 \\ \hline \end{array} \][/tex]
### Step 2: Calculate the Means
First, we calculate the mean of x and y:
[tex]\[ \bar{x} = \frac{0 + 1 + 2 + 3 + 4 + 5}{6} = \frac{15}{6} = 2.5 \][/tex]
[tex]\[ \bar{y} = \frac{1047 + 1020 + 989 + 943 + 964 + 880}{6} = \frac{5843}{6} \approx 973.8 \][/tex]
### Step 3: Calculate the Slope (m) and y-Intercept (b)
The formula for the slope [tex]\( m \)[/tex] of the least squares regression line is:
[tex]\[ m = \frac{\sum{(x_i - \bar{x})(y_i - \bar{y})}}{\sum{(x_i - \bar{x})^2}} \][/tex]
Let's calculate each part step-by-step.
#### Numerator Calculation:
[tex]\[ \sum{(x_i - \bar{x})(y_i - \bar{y})} \][/tex]
[tex]\[ = (0 - 2.5)(1047 - 973.8) + (1 - 2.5)(1020 - 973.8) + (2 - 2.5)(989 - 973.8) + (3 - 2.5)(943 - 973.8) + (4 - 2.5)(964 - 973.8) + (5 - 2.5)(880 - 973.8) \][/tex]
[tex]\[ = (-2.5 \times 73.2) + (-1.5 \times 46.2) + (-0.5 \times 15.2) + (0.5 \times (-30.8)) + (1.5 \times (-9.8)) + (2.5 \times (-93.8)) \][/tex]
[tex]\[ = -183 + -69.3 + -7.6 + -15.4 + -14.7 + -234.5 = -524.5 \][/tex]
#### Denominator Calculation:
[tex]\[ \sum{(x_i - \bar{x})^2} = (0 - 2.5)^2 + (1 - 2.5)^2 + (2 - 2.5)^2 + (3 - 2.5)^2 + (4 - 2.5)^2 + (5 - 2.5)^2 \][/tex]
[tex]\[ = 6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25 = 17.5 \][/tex]
#### Slope (m):
[tex]\[ m = \frac{-524.5}{17.5} \approx -30 \][/tex]
#### y-Intercept (b):
[tex]\[ b = \bar{y} - m\bar{x} \][/tex]
[tex]\[ b = 973.8 - (-30 \times 2.5) = 973.8 + 75 = 1048.8 \][/tex]
### Step 4: Write the Linear Regression Equation
The linear regression equation is:
[tex]\[ y = mx + b \][/tex]
Substituting the calculated [tex]\( m \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ y = -30x + 1048.8 \][/tex]
Round the coefficients to the nearest tenth:
[tex]\[ y = -30x + 1048.8 \][/tex]
### Step 5: Project the Number of New Cases for 2026
To find the number of new cases for 2026, we need to calculate [tex]\( x \)[/tex] for the year 2026.
Since [tex]\( x \)[/tex] represents the number of years since 2014:
[tex]\[ x = 2026 - 2014 = 12 \][/tex]
Substitute [tex]\( x = 12 \)[/tex] into the linear regression equation:
[tex]\[ y = -30(12) + 1048.8 \][/tex]
[tex]\[ y = -360 + 1048.8 \][/tex]
[tex]\[ y = 688.8 \][/tex]
Rounding to the nearest whole number, the projected number of new cases for 2026 is:
[tex]\[ \boxed{689} \][/tex]