Simplify the following expression:
[tex]\[ 5(a+b) + 2(a+c) - 4(b+c) \][/tex]

A. [tex]\(3(a+b)\)[/tex]

B. [tex]\(3(a+b+c)\)[/tex]

C. [tex]\(7a + b + 6c\)[/tex]

D. [tex]\(7a - 3b + 2c\)[/tex]

E. [tex]\(7a + b - 2c\)[/tex]



Answer :

To solve the expression [tex]\(5(a+b)+2(a+c)-4(b+c)\)[/tex], we will follow a step-by-step approach to simplify it.

### Step-by-Step Simplification:

1. Expand each term:

The expression begins as:

[tex]\[ 5(a + b) + 2(a + c) - 4(b + c) \][/tex]

We will first distribute the coefficients inside the parentheses:

[tex]\[ 5(a + b) = 5a + 5b \][/tex]

[tex]\[ 2(a + c) = 2a + 2c \][/tex]

[tex]\[ -4(b + c) = -4b - 4c \][/tex]

2. Combine all the expanded terms:

Now, substitute the expanded terms back into the original expression:

[tex]\[ 5a + 5b + 2a + 2c - 4b - 4c \][/tex]

3. Group like terms together:

Combine all terms involving [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] separately:

[tex]\[ (5a + 2a) + (5b - 4b) + (2c - 4c) \][/tex]

Simplifying each group:

[tex]\[ 5a + 2a = 7a \][/tex]

[tex]\[ 5b - 4b = b \][/tex]

[tex]\[ 2c - 4c = -2c \][/tex]

4. Write the simplified expression:

Therefore, we get:

[tex]\[ 7a + b - 2c \][/tex]

### Final Answer:

The simplified form of the expression [tex]\(5(a+b)+2(a+c)-4(b+c)\)[/tex] is:

[tex]\[ 7a + b - 2c \][/tex]

So the correct choice from the given options is [tex]\( \boxed{7a + b - 2c} \)[/tex].