Subtracting [tex]\( n \)[/tex] from 4 added to three times [tex]\( n \)[/tex] is equal to:

A. [tex]\( 4n - 4 \)[/tex]
B. [tex]\( -2n + 4 \)[/tex]
C. [tex]\( 2n + 4 \)[/tex]
D. [tex]\( -2n - 4 \)[/tex]
E. [tex]\( 4n + 4 \)[/tex]



Answer :

Sure, let's solve this step by step!

We need to simplify the expression "subtracting [tex]\( n \)[/tex] from 4 added to three times [tex]\( n \)[/tex]."

1. Formulate the Expression:
Let's break down the problem.

- Start with "4 added to three times [tex]\( n \)[/tex]":
[tex]\[ 4 + 3n \][/tex]

- Now, subtract [tex]\( n \)[/tex]:
[tex]\[ 4 + 3n - n \][/tex]

2. Simplify the Expression:
Combine like terms:
[tex]\[ 4 + 3n - n = 4 + 2n \][/tex]

So, the simplified expression is:
[tex]\[ 2n + 4 \][/tex]

3. Matching with Given Options:
We need to compare this simplified expression to the given options:

- [tex]\( 4n - 4 \)[/tex]
- [tex]\( -2n + 4 \)[/tex]
- [tex]\( 2n + 4 \)[/tex]
- [tex]\( -2n - 4 \)[/tex]
- [tex]\( 4n + 4 \)[/tex]

Clearly, the simplified expression [tex]\( 2n + 4 \)[/tex] matches with the 3rd option.

So, the correct answer is:
[tex]\[ \boxed{2n + 4} \][/tex]