Sure, let's solve this step by step!
We need to simplify the expression "subtracting [tex]\( n \)[/tex] from 4 added to three times [tex]\( n \)[/tex]."
1. Formulate the Expression:
Let's break down the problem.
- Start with "4 added to three times [tex]\( n \)[/tex]":
[tex]\[
4 + 3n
\][/tex]
- Now, subtract [tex]\( n \)[/tex]:
[tex]\[
4 + 3n - n
\][/tex]
2. Simplify the Expression:
Combine like terms:
[tex]\[
4 + 3n - n = 4 + 2n
\][/tex]
So, the simplified expression is:
[tex]\[
2n + 4
\][/tex]
3. Matching with Given Options:
We need to compare this simplified expression to the given options:
- [tex]\( 4n - 4 \)[/tex]
- [tex]\( -2n + 4 \)[/tex]
- [tex]\( 2n + 4 \)[/tex]
- [tex]\( -2n - 4 \)[/tex]
- [tex]\( 4n + 4 \)[/tex]
Clearly, the simplified expression [tex]\( 2n + 4 \)[/tex] matches with the 3rd option.
So, the correct answer is:
[tex]\[
\boxed{2n + 4}
\][/tex]