Answer :

Let's solve the expression step-by-step:

1. Calculate [tex]\((-2)^3\)[/tex]:
[tex]\[ (-2)^3 = (-2) \times (-2) \times (-2) \][/tex]
First, [tex]\((-2) \times (-2)\)[/tex] equals [tex]\(4\)[/tex].
Then, [tex]\(4 \times (-2)\)[/tex] equals [tex]\(-8\)[/tex].
So, [tex]\((-2)^3 = -8\)[/tex].

2. Calculate [tex]\((-3)^2\)[/tex]:
[tex]\[ (-3)^2 = (-3) \times (-3) \][/tex]
[tex]\((-3) \times (-3)\)[/tex] equals [tex]\(9\)[/tex].
So, [tex]\((-3)^2 = 9\)[/tex].

3. Sum the results:
[tex]\[ -8 + 9 \][/tex]
Adding these together, [tex]\(-8 + 9\)[/tex] equals [tex]\(1\)[/tex].

Thus, the value of the expression [tex]\((-2)^3 + (-3)^2\)[/tex] is [tex]\(\boxed{1}\)[/tex].