4. [tex]\(\frac{2}{3}+\frac{1}{4} \times \frac{2}{5}-\frac{3}{4}+\frac{5}{2}=\)[/tex]

A. [tex]\(-\frac{67}{50}\)[/tex]

B. [tex]\(\frac{13}{15}\)[/tex]

C. [tex]\(-\frac{23}{50}\)[/tex]

D. [tex]\(\frac{7}{15}\)[/tex]



Answer :

To solve the expression [tex]\(\frac{2}{3} + \frac{1}{4} \times \frac{2}{5} - \frac{3}{4} + \frac{5}{2}\)[/tex], we will follow the order of operations: parentheses, exponents, multiplication and division (from left to right), and addition and subtraction (from left to right).

Let's break it down step by step:

1. Multiplication:
[tex]\[ \frac{1}{4} \times \frac{2}{5} = \frac{1 \times 2}{4 \times 5} = \frac{2}{20} = \frac{1}{10} \][/tex]

2. Expression Update:
[tex]\[ \frac{2}{3} + \frac{1}{10} - \frac{3}{4} + \frac{5}{2} \][/tex]

3. Finding a common denominator:
To simplify the addition and subtraction, we will find a common denominator for [tex]\(\frac{2}{3}\)[/tex], [tex]\(\frac{1}{10}\)[/tex], [tex]\(\frac{3}{4}\)[/tex], and [tex]\(\frac{5}{2}\)[/tex].

- The least common multiple (LCM) of 3, 10, 4, and 2 is 60.

- Convert each fraction to have a denominator of 60:
- [tex]\(\frac{2}{3} = \frac{2 \times 20}{3 \times 20} = \frac{40}{60}\)[/tex]
- [tex]\(\frac{1}{10} = \frac{1 \times 6}{10 \times 6} = \frac{6}{60}\)[/tex]
- [tex]\(\frac{3}{4} = \frac{3 \times 15}{4 \times 15} = \frac{45}{60}\)[/tex]
- [tex]\(\frac{5}{2} = \frac{5 \times 30}{2 \times 30} = \frac{150}{60}\)[/tex]

4. Updating Expression with Common Denominator:
[tex]\[ \frac{40}{60} + \frac{6}{60} - \frac{45}{60} + \frac{150}{60} \][/tex]

5. Combining the Fractions:
[tex]\[ \frac{40 + 6 - 45 + 150}{60} = \frac{151}{60} \][/tex]

The simplification gives us the result [tex]\(\frac{151}{60}\)[/tex], which corresponds to the given result.

None of the options A, B, C, or D match the obtained fraction. Therefore, it appears the correct numerical answer, based on detailed step-by-step calculation, is [tex]\(\frac{151}{60}\)[/tex], which is not among the given options.