Lorne subtracted [tex]$6x^3 - 2x + 3$[/tex] from [tex]-3x^3 + 5x^2 + 4x - 7[/tex]. Use the drop-down menus to identify the steps Lorne used to find the difference.

1. [tex]\left(-3x^3 + 5x^2 + 4x - 7\right) - \left(6x^3 - 2x + 3\right)[/tex]
2. [tex]-3x^3 + 5x^2 + 4x - 7 - 6x^3 + 2x - 3[/tex]
3. [tex]\left(-3x^3 - 6x^3\right) + \left(4x + 2x\right) + \left(-7 - 3\right) + \left(5x^2\right)[/tex]
4. [tex]-9x^3 + 6x - 10 + 5x^2[/tex]
5. [tex]-9x^3 + 5x^2 + 6x - 10[/tex]



Answer :

Sure, let's break down the steps Lorne used to subtract the polynomial [tex]\(6x^3 - 2x + 3\)[/tex] from [tex]\(-3x^3 + 5x^2 + 4x - 7\)[/tex].

1. Initial setup:
[tex]\[ \left(-3x^3 + 5x^2 + 4x - 7\right) + \left(-6x^3 + 2x - 3\right) \][/tex]
Here, Lorne is setting up the problem by adding the opposite of the polynomial that needs to be subtracted.

2. Distributing within the polynomials:
[tex]\[ \left(-3x^3\right) + 5x^2 + 4x + (-7) + \left(-6x^3\right) + 2x + (-3) \][/tex]
Lorne writes out each term of both polynomials separately so that they can be grouped by similar terms.

3. Grouping like terms:
[tex]\[ \left[\left(-3x^3\right) + \left(-6x^3\right)\right] + [4x + 2x] + [(-7) + (-3)] + \left[5x^2\right] \][/tex]
Now, the like terms (terms with the same degree) are grouped together for simplification.

4. Simplifying each group of like terms:
[tex]\[ -9x^3 + 6x + (-10) + 5x^2 \][/tex]
Lorne adds the coefficients of the terms with the same degrees:
- [tex]\((-3x^3) + (-6x^3) = -9x^3\)[/tex]
- [tex]\(4x + 2x = 6x\)[/tex]
- [tex]\((-7) + (-3) = -10\)[/tex]
- [tex]\(5x^2\)[/tex] remains as is because there is no similar term to combine with.

5. Writing the polynomial in standard form:
[tex]\[ -9x^3 + 5x^2 + 6x - 10 \][/tex]
All of the simplified terms are combined into the final polynomial, ordered by the decreasing power of [tex]\(x\)[/tex].

These steps clearly show the process Lorne used to find the difference between the two polynomials.