Simplify

[tex]\[
\frac{\sqrt[3]{6}}{\sqrt[4]{6}}
\][/tex]

A. [tex]\(6^{\frac{1}{12}}\)[/tex]

B. [tex]\(6^{\frac{1}{4}}\)[/tex]

C. [tex]\(6^{\frac{4}{3}}\)[/tex]

D. [tex]\(6^{\frac{7}{12}}\)[/tex]



Answer :

To simplify the expression [tex]\(\frac{\sqrt[3]{6}}{\sqrt[4]{6}}\)[/tex], we need to work with exponents.

First, let's express the roots in exponential form:
[tex]\[ \sqrt[3]{6} = 6^{\frac{1}{3}} \][/tex]
[tex]\[ \sqrt[4]{6} = 6^{\frac{1}{4}} \][/tex]

Now we have the expression in exponents:
[tex]\[ \frac{6^{\frac{1}{3}}}{6^{\frac{1}{4}}} \][/tex]

When dividing exponents with the same base, we subtract the exponents:
[tex]\[ \frac{6^{\frac{1}{3}}}{6^{\frac{1}{4}}} = 6^{\frac{1}{3} - \frac{1}{4}} \][/tex]

To proceed with the subtraction, we need a common denominator for the fractions:
[tex]\[ \frac{1}{3} = \frac{4}{12} \][/tex]
[tex]\[ \frac{1}{4} = \frac{3}{12} \][/tex]

Now subtract the fractions:
[tex]\[ \frac{1}{3} - \frac{1}{4} = \frac{4}{12} - \frac{3}{12} = \frac{1}{12} \][/tex]

So, the simplified exponent is:
[tex]\[ 6^{\frac{1}{12}} \][/tex]

Therefore, the simplified form of [tex]\(\frac{\sqrt[3]{6}}{\sqrt[4]{6}}\)[/tex] is:
[tex]\[ 6^{\frac{1}{12}} \][/tex]

Among the given options, the correct answer is:
[tex]\[ 6^{\frac{1}{12}} \][/tex]