The equation for the area of a trapezoid is [tex]A=\frac{1}{2} h\left(b_1+b_2\right)[/tex]. If [tex]A=28[/tex], [tex]b_1=6[/tex], and [tex]b_2=8[/tex], what is the height of the trapezoid?

A. [tex]h=2[/tex]
B. [tex]h=4[/tex]
C. [tex]h=6[/tex]
D. [tex]h=7[/tex]



Answer :

To solve for the height [tex]\( h \)[/tex] of the trapezoid, we can use the given formula for the area of a trapezoid:

[tex]\[ A = \frac{1}{2} h \left(b_1 + b_2\right) \][/tex]

We are given:
- The area [tex]\( A = 28 \)[/tex]
- The length of the first base [tex]\( b_1 = 6 \)[/tex]
- The length of the second base [tex]\( b_2 = 8 \)[/tex]

First, substitute the known values into the formula:

[tex]\[ 28 = \frac{1}{2} h \left(6 + 8\right) \][/tex]

Next, simplify the expression inside the parentheses:

[tex]\[ 28 = \frac{1}{2} h \cdot 14 \][/tex]

Multiply both sides of the equation by 2 to eliminate the fraction:

[tex]\[ 28 \cdot 2 = h \cdot 14 \][/tex]

[tex]\[ 56 = h \cdot 14 \][/tex]

Now solve for [tex]\( h \)[/tex] by dividing both sides of the equation by 14:

[tex]\[ h = \frac{56}{14} \][/tex]

[tex]\[ h = 4 \][/tex]

Therefore, the height of the trapezoid is [tex]\( h = 4 \)[/tex]. The correct answer is:

[tex]\[ h = 4 \][/tex]