Pablo folds a straw into a triangle with side lengths of [tex]$4x^2 - 3$[/tex] inches, [tex]$4x^2 - 2$[/tex] inches, and [tex][tex]$4x^2 - 1$[/tex][/tex] inches.

Which expression can be used to find the perimeter of the triangle, and what is the perimeter when [tex]$x = 1.5$[/tex]?

A. [tex]12x^2 - 6 ; 21[/tex] inches
B. [tex]12x^2 ; 27[/tex] inches
C. [tex]12x^2 - 6 ; 30[/tex] inches
D. [tex]12x^2 ; 36[/tex] inches



Answer :

To find the perimeter of a triangle, we need to sum the lengths of its sides. Given the side lengths of [tex]\(4 x^2 - 3\)[/tex] inches, [tex]\(4 x^2 - 2\)[/tex] inches, and [tex]\(4 x^2 - 1\)[/tex] inches, let's add them together to form a single expression for the perimeter.

1. Sum the expressions for the side lengths:

[tex]\[ (4 x^2 - 3) + (4 x^2 - 2) + (4 x^2 - 1) \][/tex]

2. Combine like terms:

[tex]\[ 4 x^2 + 4 x^2 + 4 x^2 - 3 - 2 - 1 \][/tex]

3. Simplify the expression:

[tex]\[ 12 x^2 - 6 \][/tex]

So, the expression for the perimeter of the triangle is [tex]\(12 x^2 - 6\)[/tex].

Next, we need to find the perimeter when [tex]\(x = 1.5\)[/tex].

4. Substitute [tex]\(x = 1.5\)[/tex] into the perimeter expression:

[tex]\[ 12 (1.5)^2 - 6 \][/tex]

5. Compute the squared term:

[tex]\[ (1.5)^2 = 2.25 \][/tex]

6. Multiply by 12:

[tex]\[ 12 \cdot 2.25 = 27 \][/tex]

7. Subtract 6:

[tex]\[ 27 - 6 = 21 \][/tex]

Thus, the expression for the perimeter of the triangle is [tex]\(12 x^2 - 6\)[/tex], and the perimeter when [tex]\(x = 1.5\)[/tex] is 21 inches.

Therefore, the correct answer is:

[tex]\[ 12 x^2 - 6 ; 21 \text{ inches} \][/tex]