Write the linear equation that gives the rule for this table.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
2 & 91 \\
\hline
3 & 94 \\
\hline
4 & 97 \\
\hline
5 & 100 \\
\hline
\end{tabular}

Write your answer as an equation with [tex]$y$[/tex] first, followed by an equals sign.

[tex]$\square$[/tex]



Answer :

To find the linear equation that describes the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the given table, we'll find the slope of the line and the y-intercept.

The table provides the following data points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 2 & 91 \\ \hline 3 & 94 \\ \hline 4 & 97 \\ \hline 5 & 100 \\ \hline \end{array} \][/tex]

1. Calculate the slope [tex]\( m \)[/tex]:

The slope formula is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Using the points (2, 91) and (5, 100), we have:
[tex]\[ m = \frac{100 - 91}{5 - 2} = \frac{9}{3} = 3.0 \][/tex]

2. Calculate the y-intercept [tex]\( b \)[/tex]:

Using the slope [tex]\( m = 3.0 \)[/tex] and one of the points, such as (2, 91), we use the formula for calculating the y-intercept:
[tex]\[ y = mx + b \implies 91 = 3.0 \cdot 2 + b \][/tex]
Solving for [tex]\( b \)[/tex]:
[tex]\[ 91 = 6 + b \implies b = 91 - 6 = 85.0 \][/tex]

3. Form the linear equation:

The linear equation in the form [tex]\( y = mx + b \)[/tex] is:
[tex]\[ y = 3.0x + 85.0 \][/tex]

So, the rule for this table is given by the equation:
[tex]\[ y = 3.0x + 85.0 \][/tex]