The functions [tex]f(x)[/tex] and [tex]g(x)[/tex] are described using the following equation and table:

[tex]\[ f(x) = -6(1.05)^x \][/tex]

[tex]\[
\begin{tabular}{|l|l|}
\hline
$x$ & $g(x)$ \\
\hline
-4 & -9 \\
\hline
-2 & -6 \\
\hline
0 & -3 \\
\hline
2 & 2 \\
\hline
\end{tabular}
\][/tex]

Which equation best compares the [tex]y[/tex]-intercepts of [tex]f(x)[/tex] and [tex]g(x)[/tex]?

A. The [tex]y[/tex]-intercept of [tex]f(x)[/tex] is equal to the [tex]y[/tex]-intercept of [tex]g(x)[/tex].
B. The [tex]y[/tex]-intercept of [tex]f(x)[/tex] is equal to 2 times the [tex]y[/tex]-intercept of [tex]g(x)[/tex].
C. The [tex]y[/tex]-intercept of [tex]g(x)[/tex] is equal to 2 times the [tex]y[/tex]-intercept of [tex]f(x)[/tex].
D. The [tex]y[/tex]-intercept of [tex]g(x)[/tex] is equal to 2 plus the [tex]y[/tex]-intercept of [tex]f(x)[/tex].



Answer :

To compare the [tex]$y$[/tex]-intercepts of the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex], we follow these steps:

1. Find the [tex]$y$[/tex]-intercept of [tex]\(f(x)\)[/tex]:
To determine the [tex]$y$[/tex]-intercept of [tex]\(f(x)\)[/tex], we evaluate [tex]\(f(x)\)[/tex] at [tex]\(x = 0\)[/tex].
[tex]\[ f(0) = -6(1.05)^0 \][/tex]
Since any number raised to the power of 0 is 1, this simplifies to:
[tex]\[ f(0) = -6 \cdot 1 = -6.0 \][/tex]
Therefore, the [tex]$y$[/tex]-intercept of [tex]\(f(x)\)[/tex] is [tex]\(-6.0\)[/tex].

2. Find the [tex]$y$[/tex]-intercept of [tex]\(g(x)\)[/tex]:
To determine the [tex]$y$[/tex]-intercept of [tex]\(g(x)\)[/tex], we look at the value of [tex]\(g(x)\)[/tex] corresponding to [tex]\(x = 0\)[/tex] in the provided table.
[tex]\[ g(0) = -3 \][/tex]
Therefore, the [tex]$y$[/tex]-intercept of [tex]\(g(x)\)[/tex] is [tex]\(-3\)[/tex].

3. Compare the [tex]$y$[/tex]-intercepts:
The [tex]$y$[/tex]-intercept of [tex]\(f(x)\)[/tex] is [tex]\(-6.0\)[/tex], and the [tex]$y$[/tex]-intercept of [tex]\(g(x)\)[/tex] is [tex]\(-3\)[/tex]. To find the best comparison:
[tex]\[ \text{The $y$-intercept of \(g(x)\), which is \(-3\), is equal to 2 times the $y$-intercept of \(f(x)\), which is \(-6.0\)} \][/tex]
[tex]\[ -3 = 2 \times (-6.0) \][/tex]

Therefore, the correct comparison according to the given [tex]\(y\)[/tex]-intercepts is:

The [tex]$y$[/tex]-intercept of [tex]\(g(x)\)[/tex] is equal to 2 times the [tex]$y$[/tex]-intercept of [tex]\(f(x)\)[/tex].