Write the linear equation that gives the rule for this table.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
1 & -1 \\
\hline
2 & -2 \\
\hline
3 & -3 \\
\hline
4 & -4 \\
\hline
\end{tabular}

Write your answer as an equation with [tex]$y$[/tex] first, followed by an equals sign.
[tex]$\square$[/tex]



Answer :

Certainly! Let's determine the linear equation that relates [tex]\( x \)[/tex] and [tex]\( y \)[/tex] based on the given table of values.

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & -1 \\ \hline 2 & -2 \\ \hline 3 & -3 \\ \hline 4 & -4 \\ \hline \end{array} \][/tex]

To find the linear equation [tex]\( y = mx + b \)[/tex], we need to calculate the slope [tex]\( m \)[/tex] and the y-intercept [tex]\( b \)[/tex].

### Finding the Slope ([tex]\( m \)[/tex])

The slope [tex]\( m \)[/tex] can be determined using any two points from the table. Let's use the points [tex]\((1, -1)\)[/tex] and [tex]\((2, -2)\)[/tex].

The formula to calculate the slope ([tex]\( m \)[/tex]) is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Substitute the coordinates of the two points:

[tex]\[ m = \frac{-2 - (-1)}{2 - 1} = \frac{-2 + 1}{1} = \frac{-1}{1} = -1 \][/tex]

So, the slope [tex]\( m \)[/tex] is [tex]\(-1\)[/tex].

### Finding the Y-Intercept ([tex]\( b \)[/tex])

The y-intercept [tex]\( b \)[/tex] can be found by plugging in the slope [tex]\( m \)[/tex] and the coordinates of one of the points into the equation [tex]\( y = mx + b \)[/tex]. Let's use the point [tex]\((1, -1)\)[/tex].

The equation becomes:

[tex]\[ -1 = (-1)(1) + b \][/tex]
[tex]\[ -1 = -1 + b \][/tex]

Solving for [tex]\( b \)[/tex]:

[tex]\[ b = -1 + 1 = 0 \][/tex]

So, the y-intercept [tex]\( b \)[/tex] is [tex]\( 0 \)[/tex].

### Forming the Equation

Now that we have the slope and the y-intercept, we can write the linear equation:

[tex]\[ y = -1x + 0 \][/tex]

Simplifying this, we get:

[tex]\[ y = -x \][/tex]

Thus, the linear equation that represents the relationship in the table is:

[tex]\[ y = -x \][/tex]