Answer :

To determine [tex]\(\|c u \|\)[/tex] for [tex]\(u = \langle 5, -12 \rangle\)[/tex] and [tex]\(c = -3\)[/tex], follow these steps:

1. Scalar Multiplication: Multiply each component of the vector [tex]\(u\)[/tex] by the scalar [tex]\(c\)[/tex]:

[tex]\[ c \cdot u = c \cdot \langle 5, -12 \rangle = \langle c \cdot 5, c \cdot -12 \rangle = \langle -15, 36 \rangle \][/tex]

2. Calculate the Magnitude: The magnitude (or Euclidean norm) of a vector [tex]\( \langle a, b \rangle \)[/tex] is given by:

[tex]\[ \| \langle a, b \rangle \| = \sqrt{a^2 + b^2} \][/tex]

For our vector [tex]\(\langle -15, 36 \rangle\)[/tex]:

[tex]\[ \| \langle -15, 36 \rangle \| = \sqrt{(-15)^2 + 36^2} = \sqrt{225 + 1296} = \sqrt{1521} = 39 \][/tex]

Therefore, the magnitude [tex]\(\|c u \|\)[/tex] is [tex]\(39\)[/tex].

Among the given options, the correct answer is:

- [tex]\(39\)[/tex]

So, [tex]\(\|c u \| = 39\)[/tex].