Solve for [tex]$x$[/tex]. Round your answers to two decimal places.

[tex]3x^2 + 2x = 6[/tex]

A. [tex]x = 1.12[/tex] and [tex]x = -1.79[/tex]
B. [tex]x = -1.12[/tex] and [tex]x = 1.79[/tex]
C. [tex]x = 0.83[/tex] and [tex]x = -1.34[/tex]
D. [tex]x = -0.83[/tex] and [tex]x = 1.34[/tex]



Answer :

Given the quadratic equation:

[tex]\[ 3x^2 + 2x = 6 \][/tex]

First, we need to express this equation in standard quadratic form:

[tex]\[ 3x^2 + 2x - 6 = 0 \][/tex]

Here, the coefficients are [tex]\(a = 3\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = -6\)[/tex]. We will solve for [tex]\(x\)[/tex] using the quadratic formula:

[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]

1. Calculate the discriminant ([tex]\(\Delta\)[/tex]):

[tex]\[ \Delta = b^2 - 4ac = 2^2 - 4 \cdot 3 \cdot (-6) = 4 + 72 = 76 \][/tex]

2. Take the square root of the discriminant:

[tex]\[ \sqrt{\Delta} = \sqrt{76} \approx 8.72 \][/tex]

3. Apply the quadratic formula to find the roots:

[tex]\[ x_1 = \frac{{-b + \sqrt{\Delta}}}{2a} = \frac{{-2 + 8.72}}{6} = \frac{6.72}{6} \approx 1.12 \][/tex]

[tex]\[ x_2 = \frac{{-b - \sqrt{\Delta}}}{2a} = \frac{{-2 - 8.72}}{6} = \frac{-10.72}{6} \approx -1.79 \][/tex]

Thus, the solutions to the equation [tex]\(3x^2 + 2x - 6 = 0\)[/tex], rounded to two decimal places, are:

[tex]\[ x = 1.12 \quad \text{and} \quad x = -1.79 \][/tex]

From the given options, the correct one is:

[tex]\[ x = 1.12 \quad \text{and} \quad x = -1.79 \][/tex]