Answer :
Given the continuous functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex], let's determine the [tex]\( x \)[/tex]-intercepts of each function and compare them.
### For Function [tex]\( f \)[/tex]:
The provided table of values shows the [tex]\( x \)[/tex] and [tex]\( f(x) \)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 2 & \\ \hline -1 & -4 \\ \hline 0 & -2 \\ \hline 3 & 0 \\ \hline 8 & 2 \\ \hline 15 & 4 \\ \hline 24 & 6 \\ \hline \end{array} \][/tex]
To find the [tex]\( x \)[/tex]-intercept of [tex]\( f \)[/tex], we look for where [tex]\( f(x) = 0 \)[/tex]. From the table, we see that [tex]\( f(3) = 0 \)[/tex]. Therefore, the [tex]\( x \)[/tex]-intercept of [tex]\( f \)[/tex] is [tex]\( 3 \)[/tex].
### For Function [tex]\( g \)[/tex]:
The function [tex]\( g \)[/tex] is defined as:
[tex]\[ g(x) = 2 + (3x + 1)^{1/3} \][/tex]
To find the [tex]\( x \)[/tex]-intercept of [tex]\( g \)[/tex], we solve for [tex]\( x \)[/tex] such that [tex]\( g(x) = 0 \)[/tex]:
[tex]\[ 0 = 2 + (3x + 1)^{1/3} \][/tex]
Rearranging the equation:
[tex]\[ (3x + 1)^{1/3} = -2 \][/tex]
Cubing both sides gives:
[tex]\[ 3x + 1 = (-2)^3 \][/tex]
[tex]\[ 3x + 1 = -8 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 3x = -8 - 1 \][/tex]
[tex]\[ 3x = -9 \][/tex]
[tex]\[ x = -3 \][/tex]
Therefore, the [tex]\( x \)[/tex]-intercept of [tex]\( g \)[/tex] is [tex]\(-3\)[/tex].
### Comparison:
We now compare the [tex]\( x \)[/tex]-intercept of [tex]\( f \)[/tex] (which is [tex]\( 3 \)[/tex]) with the [tex]\( x \)[/tex]-intercept of [tex]\( g \)[/tex] (which is [tex]\(-3\)[/tex]).
Clearly, [tex]\( 3 \)[/tex] is greater than [tex]\(-3\)[/tex].
So the completed statement should read:
The [tex]\( x \)[/tex]-intercept of function [tex]\( f \)[/tex] is greater than the [tex]\( x \)[/tex]-intercept of function [tex]\( g \)[/tex].
### For Function [tex]\( f \)[/tex]:
The provided table of values shows the [tex]\( x \)[/tex] and [tex]\( f(x) \)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 2 & \\ \hline -1 & -4 \\ \hline 0 & -2 \\ \hline 3 & 0 \\ \hline 8 & 2 \\ \hline 15 & 4 \\ \hline 24 & 6 \\ \hline \end{array} \][/tex]
To find the [tex]\( x \)[/tex]-intercept of [tex]\( f \)[/tex], we look for where [tex]\( f(x) = 0 \)[/tex]. From the table, we see that [tex]\( f(3) = 0 \)[/tex]. Therefore, the [tex]\( x \)[/tex]-intercept of [tex]\( f \)[/tex] is [tex]\( 3 \)[/tex].
### For Function [tex]\( g \)[/tex]:
The function [tex]\( g \)[/tex] is defined as:
[tex]\[ g(x) = 2 + (3x + 1)^{1/3} \][/tex]
To find the [tex]\( x \)[/tex]-intercept of [tex]\( g \)[/tex], we solve for [tex]\( x \)[/tex] such that [tex]\( g(x) = 0 \)[/tex]:
[tex]\[ 0 = 2 + (3x + 1)^{1/3} \][/tex]
Rearranging the equation:
[tex]\[ (3x + 1)^{1/3} = -2 \][/tex]
Cubing both sides gives:
[tex]\[ 3x + 1 = (-2)^3 \][/tex]
[tex]\[ 3x + 1 = -8 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ 3x = -8 - 1 \][/tex]
[tex]\[ 3x = -9 \][/tex]
[tex]\[ x = -3 \][/tex]
Therefore, the [tex]\( x \)[/tex]-intercept of [tex]\( g \)[/tex] is [tex]\(-3\)[/tex].
### Comparison:
We now compare the [tex]\( x \)[/tex]-intercept of [tex]\( f \)[/tex] (which is [tex]\( 3 \)[/tex]) with the [tex]\( x \)[/tex]-intercept of [tex]\( g \)[/tex] (which is [tex]\(-3\)[/tex]).
Clearly, [tex]\( 3 \)[/tex] is greater than [tex]\(-3\)[/tex].
So the completed statement should read:
The [tex]\( x \)[/tex]-intercept of function [tex]\( f \)[/tex] is greater than the [tex]\( x \)[/tex]-intercept of function [tex]\( g \)[/tex].