Consider continuous functions [tex]$f$[/tex] and [tex]$g$[/tex]. Then complete the statement.

\begin{tabular}{|c|c|}
\hline
2 & \\
\hline
-1 & -4 \\
\hline
0 & -2 \\
\hline
3 & 0 \\
\hline
8 & 2 \\
\hline
15 & 4 \\
\hline
24 & 6 \\
\hline
\end{tabular}

Function [tex]$g$[/tex] is the sum of 2 and the cube root of the sum of three times [tex]$x$[/tex] and 1.

Select the correct answer from each drop-down.

The [tex]$x$[/tex]-intercept of function [tex]$f$[/tex] is less than [tex]$\square$[/tex] the [tex]$x$[/tex]-intercept of function [tex]$g$[/tex].



Answer :

Given the continuous functions [tex]\( f \)[/tex] and [tex]\( g \)[/tex], let's determine the [tex]\( x \)[/tex]-intercepts of each function and compare them.

### For Function [tex]\( f \)[/tex]:
The provided table of values shows the [tex]\( x \)[/tex] and [tex]\( f(x) \)[/tex]:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 2 & \\ \hline -1 & -4 \\ \hline 0 & -2 \\ \hline 3 & 0 \\ \hline 8 & 2 \\ \hline 15 & 4 \\ \hline 24 & 6 \\ \hline \end{array} \][/tex]

To find the [tex]\( x \)[/tex]-intercept of [tex]\( f \)[/tex], we look for where [tex]\( f(x) = 0 \)[/tex]. From the table, we see that [tex]\( f(3) = 0 \)[/tex]. Therefore, the [tex]\( x \)[/tex]-intercept of [tex]\( f \)[/tex] is [tex]\( 3 \)[/tex].

### For Function [tex]\( g \)[/tex]:
The function [tex]\( g \)[/tex] is defined as:

[tex]\[ g(x) = 2 + (3x + 1)^{1/3} \][/tex]

To find the [tex]\( x \)[/tex]-intercept of [tex]\( g \)[/tex], we solve for [tex]\( x \)[/tex] such that [tex]\( g(x) = 0 \)[/tex]:

[tex]\[ 0 = 2 + (3x + 1)^{1/3} \][/tex]

Rearranging the equation:

[tex]\[ (3x + 1)^{1/3} = -2 \][/tex]

Cubing both sides gives:

[tex]\[ 3x + 1 = (-2)^3 \][/tex]

[tex]\[ 3x + 1 = -8 \][/tex]

Solving for [tex]\( x \)[/tex]:

[tex]\[ 3x = -8 - 1 \][/tex]

[tex]\[ 3x = -9 \][/tex]

[tex]\[ x = -3 \][/tex]

Therefore, the [tex]\( x \)[/tex]-intercept of [tex]\( g \)[/tex] is [tex]\(-3\)[/tex].

### Comparison:
We now compare the [tex]\( x \)[/tex]-intercept of [tex]\( f \)[/tex] (which is [tex]\( 3 \)[/tex]) with the [tex]\( x \)[/tex]-intercept of [tex]\( g \)[/tex] (which is [tex]\(-3\)[/tex]).

Clearly, [tex]\( 3 \)[/tex] is greater than [tex]\(-3\)[/tex].

So the completed statement should read:

The [tex]\( x \)[/tex]-intercept of function [tex]\( f \)[/tex] is greater than the [tex]\( x \)[/tex]-intercept of function [tex]\( g \)[/tex].