Choose the slope-intercept form of [tex]3x + 2y = 5[/tex].

A. [tex]y = \frac{3}{2}x - \frac{5}{2}[/tex]
B. [tex]y = \frac{3}{2}x + \frac{5}{2}[/tex]
C. [tex]y = \frac{2}{3}x + \frac{5}{3}[/tex]
D. [tex]y = \frac{2}{3}x - \frac{5}{3}[/tex]



Answer :

Sure, let's find the slope-intercept form of the equation [tex]\(3x + 2y = 5\)[/tex].

The slope-intercept form of a linear equation is given by [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.

1. Start with the given equation:
[tex]\[3x + 2y = 5\][/tex]

2. We need to isolate [tex]\(y\)[/tex]. First, subtract [tex]\(3x\)[/tex] from both sides to move the [tex]\(x\)[/tex]-term to the right side of the equation:
[tex]\[2y = -3x + 5\][/tex]

3. Next, divide every term by [tex]\(2\)[/tex] to solve for [tex]\(y\)[/tex]:
[tex]\[y = \frac{-3x}{2} + \frac{5}{2}\][/tex]

4. Simplify the equation to get it into the standard slope-intercept form:
[tex]\[y = -\frac{3}{2}x + \frac{5}{2}\][/tex]

So the slope-intercept form of the equation [tex]\(3x + 2y = 5\)[/tex] is:
[tex]\[ y = -\frac{3}{2}x + \frac{5}{2} \][/tex]

Now let's compare this to the given options:
1. [tex]\(y = \frac{3}{2}x - \frac{5}{2}\)[/tex]
2. [tex]\(y = \frac{3}{2}x + \frac{5}{2}\)[/tex]
3. [tex]\(y = \frac{2}{3}x + \frac{5}{3}\)[/tex]
4. [tex]\(y = \frac{2}{3}x - \frac{5}{3}\)[/tex]

None of the provided options directly match [tex]\(y = -\frac{3}{2}x + \frac{5}{2}\)[/tex].

Hence, based on the information provided, it appears there may be an issue with the provided options. None of them correctly represent the slope-intercept form of the equation [tex]\(3x + 2y = 5\)[/tex].

The correct slope-intercept form should be [tex]\(y = -\frac{3}{2}x + \frac{5}{2}\)[/tex].