Which expressions are equivalent to [tex]$6g - 18h$[/tex]?

Choose 2 answers:

A. [tex](g - 3) \cdot 6[/tex]
B. [tex]2 \cdot (3g - 9h)[/tex]
C. [tex]3(2g - 6h)[/tex]
D. [tex](-g - 3h)(-6)[/tex]
E. [tex]-2 \times (-3g + 9h)[/tex]



Answer :

To determine which expressions are equivalent to [tex]\( 6g - 18h \)[/tex], let's simplify each given option and see if it matches [tex]\( 6g - 18h \)[/tex].

### Option A:
[tex]\[ (g - 3) \cdot 6 \][/tex]
Let's distribute the 6:
[tex]\[ (g - 3) \cdot 6 = 6g - 18 \][/tex]
This does not match [tex]\( 6g - 18h \)[/tex].

### Option B:
[tex]\[ 2 \cdot (3g - 18h) \][/tex]
Let's distribute the 2:
[tex]\[ 2 \cdot (3g - 18h) = 6g - 36h \][/tex]
This does not match [tex]\( 6g - 18h \)[/tex].

### Option C:
[tex]\[ 3(2g - 6h) \][/tex]
Let's distribute the 3:
[tex]\[ 3(2g - 6h) = 6g - 18h \][/tex]
This matches [tex]\( 6g - 18h \)[/tex].

### Option D:
[tex]\[ (-g - 3h)(-6) \][/tex]
Let's distribute the [tex]\(-6\)[/tex]:
[tex]\[ (-g - 3h)(-6) = 6g + 18h \][/tex]
This does not match [tex]\( 6g - 18h \)[/tex].

### Option E:
[tex]\[ -2 \times (-3g + 9h) \][/tex]
Let's distribute the [tex]\(-2\)[/tex]:
[tex]\[ -2 \times (-3g + 9h) = 6g - 18h \][/tex]
This matches [tex]\( 6g - 18h \)[/tex].

So, the two expressions that are equivalent to [tex]\( 6g - 18h \)[/tex] are:

C: [tex]\( 3(2g - 6h) \)[/tex] and E: [tex]\( -2 \times (-3g + 9h) \)[/tex]