Choose the slope-intercept form of [tex]$y + 3 = 4(x - 5)$[/tex].

A. [tex]y = 4x - 8[/tex]
B. [tex]y = 4x + 2[/tex]
C. [tex]y = 4x + 17[/tex]
D. [tex]y = 4x - 23[/tex]



Answer :

To convert the given point-slope equation [tex]\( y + 3 = 4(x - 5) \)[/tex] into slope-intercept form, we follow these steps:

1. Distribute the 4 on the right side:
[tex]\[ y + 3 = 4(x - 5) \][/tex]
[tex]\[ y + 3 = 4 \cdot x - 4 \cdot 5 \][/tex]
[tex]\[ y + 3 = 4x - 20 \][/tex]

2. Isolate [tex]\( y \)[/tex] by subtracting 3 from both sides:
[tex]\[ y + 3 - 3 = 4x - 20 - 3 \][/tex]
[tex]\[ y = 4x - 23 \][/tex]

Therefore, the slope-intercept form of the given equation is:
[tex]\[ y = 4x - 23 \][/tex]

Looking at the provided choices, the correct answer is:
[tex]\[ y = 4x - 23 \][/tex]