Which of the following tables shows the correct steps to transform [tex]$x^2 + 6x + 8 = 0$[/tex] into the form [tex]$(x - p)^2 = q$[/tex]? (where [tex][tex]$p$[/tex][/tex] and [tex]$q$[/tex] are integers)

A.
1. [tex]x^2 + 6x + 8 - 1 = 0 - 1[/tex]
2. [tex]x^2 + 6x + 7 = -1[/tex]
3. [tex](x + 3)^2 = -1[/tex]

B.
1. [tex]x^2 + 6x + 8 + 1 = 0 + 1[/tex]
2. [tex]x^2 + 6x + 9 = 1[/tex]
3. [tex](x + 3)^2 = 1[/tex]

C.
1. [tex]x^2 + 6x + 8 - 2 = 0 - 2[/tex]
2. [tex]x^2 + 6x + 6 = -2[/tex]
3. [tex](x + 3)^2 = -2[/tex]

D.
1. [tex]x^2 + 6x + 8 + 2 = 0 + 2[/tex]
2. [tex]x^2 + 6x + 10 = 2[/tex]
3. [tex](x + 3)^2 = 2[/tex]



Answer :

To transform the quadratic equation [tex]\( x^2 + 6x + 8 = 0 \)[/tex] into the form [tex]\((x - p)^2 = q\)[/tex], we need to complete the square. Here are the correct steps:

1. Start by moving the constant term to the right side of the equation:
[tex]\[ x^2 + 6x + 8 = 0 \][/tex]
[tex]\[ x^2 + 6x + 8 - 8 = 0 - 8 \][/tex]
[tex]\[ x^2 + 6x = -8 \][/tex]

2. Next, we add and subtract the square of half the coefficient of [tex]\(x\)[/tex] to complete the square. The coefficient of [tex]\(x\)[/tex] is 6, so half of it is 3, and its square is [tex]\(3^2 = 9\)[/tex]. Thus:
[tex]\[ x^2 + 6x + 9 - 9 = -8 \][/tex]
[tex]\[ (x + 3)^2 - 9 = -8 \][/tex]

3. Finally, simplify and isolate the squared term:
[tex]\[ (x + 3)^2 - 9 = -8 \][/tex]
[tex]\[ (x + 3)^2 = 1 \][/tex]

Thus, the correct transformation is:
[tex]\[ (x + 3)^2 = 1 \][/tex]

Reviewing the given options, the correct one is:

Step [tex]$1 \quad x^2 + 6x + 8 + 1 = 0 + 1$[/tex]

Step [tex]$2 \quad x^2 + 6x + 9 = 1$[/tex]

Step [tex]$3 \quad (x + 3)^2 = 1$[/tex]

So, the correct table is:

[tex]\[ \begin{aligned} \text{Step 1} \quad & x^2 + 6x + 8 + 1 = 0 + 1 \\ \text{Step 2} \quad & x^2 + 6x + 9 = 1 \\ \text{Step 3} \quad & (x+3)^2 = 1 \\ \end{aligned} \][/tex]