To create an equivalent expression by applying the distributive property to [tex]\( (-7c + 8d) \times 0.6 \)[/tex], we will follow these steps:
1. Distribute the factor 0.6 to each term inside the parentheses:
[tex]\[
(-7c + 8d) \times 0.6 = (-7c) \times 0.6 + (8d) \times 0.6
\][/tex]
2. Multiply each term by 0.6:
For the first term, [tex]\(-7c\)[/tex]:
[tex]\[
-7c \times 0.6 = -4.2c
\][/tex]
For the second term, [tex]\(8d\)[/tex]:
[tex]\[
8d \times 0.6 = 4.8d
\][/tex]
3. Combine these terms to form the equivalent expression:
[tex]\[
-4.2c + 4.8d
\][/tex]
Therefore, the equivalent expression is:
[tex]\[
(-7c+8d) \times 0.6 = -4.2c + 4.8d
\][/tex]