Answer :

To create an equivalent expression by applying the distributive property to [tex]\( (-7c + 8d) \times 0.6 \)[/tex], we will follow these steps:

1. Distribute the factor 0.6 to each term inside the parentheses:

[tex]\[ (-7c + 8d) \times 0.6 = (-7c) \times 0.6 + (8d) \times 0.6 \][/tex]

2. Multiply each term by 0.6:

For the first term, [tex]\(-7c\)[/tex]:

[tex]\[ -7c \times 0.6 = -4.2c \][/tex]

For the second term, [tex]\(8d\)[/tex]:

[tex]\[ 8d \times 0.6 = 4.8d \][/tex]

3. Combine these terms to form the equivalent expression:

[tex]\[ -4.2c + 4.8d \][/tex]

Therefore, the equivalent expression is:

[tex]\[ (-7c+8d) \times 0.6 = -4.2c + 4.8d \][/tex]