Calculate the rate of change.

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
-2 & 17 \\
\hline
-1 & 13 \\
\hline
1 & 5 \\
\hline
2 & 1 \\
\hline
3 & -3 \\
\hline
\end{tabular}
\][/tex]



Answer :

To find the rate of change, we need to calculate the difference in the [tex]\(y\)[/tex] values and the difference in the [tex]\(x\)[/tex] values between two points, and then divide these differences. Here's the step-by-step solution:

1. Choose two points from the given data:
We can select the first two points from the table:
[tex]\[ (-2, 17) \quad \text{and} \quad (-1, 13) \][/tex]

2. Calculate the difference in [tex]\(x\)[/tex] values (Δx):
[tex]\[ Δx = x_2 - x_1 = -1 - (-2) = -1 + 2 = 1 \][/tex]

3. Calculate the difference in [tex]\(y\)[/tex] values (Δy):
[tex]\[ Δy = y_2 - y_1 = 13 - 17 = -4 \][/tex]

4. Calculate the rate of change:
[tex]\[ \text{Rate of change} = \frac{Δy}{Δx} = \frac{-4}{1} = -4 \][/tex]

Therefore, the rate of change is [tex]\(-4\)[/tex].