Select all the correct answers.

Which two inequalities can be used to find the solution to this absolute value inequality?

[tex]\[3 + 2|x-1| \ \textless \ 9\][/tex]

A. [tex]\(-2(x-1) \ \textgreater \ 3\)[/tex]

B. [tex]\(x-1 \ \textgreater \ -9\)[/tex]

C. [tex]\(x-1 \ \textgreater \ -3\)[/tex]

D. [tex]\(x-1 \ \textless \ 9\)[/tex]

E. [tex]\(x-1 \ \textless \ 3\)[/tex]

F. [tex]\(2(x-1) \ \textless \ -3\)[/tex]



Answer :

To solve the inequality involving absolute value, [tex]\[3 + 2|x - 1| < 9,\][/tex] we need to break it down into two separate inequalities, removing the absolute value. The absolute value inequality [tex]\( |x - 1| < k \)[/tex] can be written as two simultaneous inequalities:

[tex]\[ -k < x - 1 < k. \][/tex]

Here are the detailed steps to solve the given inequality:

1. Start with the inequality:
[tex]\[ 3 + 2|x - 1| < 9. \][/tex]

2. Isolate the absolute value expression:
[tex]\[ 2|x - 1| < 6 \][/tex]
(Subtract 3 from both sides.)

3. Divide both sides by 2 to simplify:
[tex]\[ |x - 1| < 3. \][/tex]

4. Now, break down the absolute value inequality into two separate inequalities:
[tex]\[ -3 < x - 1 < 3. \][/tex]

5. Solve each part of the inequality separately:

- For the left part: [tex]\[ -3 < x - 1 \][/tex]
Add 1 to both sides:
[tex]\[ -2 < x \][/tex]
Or equivalently: [tex]\[ x > -2. \][/tex]

- For the right part: [tex]\[ x - 1 < 3 \][/tex]
Add 1 to both sides:
[tex]\[ x < 4. \][/tex]

6. Combining both results, we have:
[tex]\[ -2 < x < 4. \][/tex]

This means the solution to the inequality [tex]\[ 3 + 2|x - 1| < 9 \][/tex] is found using the inequalities:
[tex]\[ x - 1 < 3 \quad \text{and} \quad x - 1 > -3 \][/tex]

Answering the original question "Select all the correct answers", the two inequalities you can use are:
[tex]\[ x - 1 < 3 \quad \text{and} \quad x - 1 > -3 \][/tex]

So, the correct choices are:

[tex]\[ x - 1 < 3 \][/tex]
[tex]\[ x - 1 > -3 \][/tex]