Suppose that there exists between the five parameters [tex]\( E, T, S, P, V \)[/tex] the following inter-relationship:

[tex]\[ S = a V^2 \ln E \][/tex]

where [tex]\( a \)[/tex] is a constant. Evaluate the following:

(a) [tex]\[ \frac{1}{T} = \left( \frac{\partial S}{\partial E} \right)_V \][/tex]

(b) [tex]\[ \frac{P}{T} = \left( \frac{\partial S}{\partial V} \right)_E \][/tex]

(c) [tex]\[ \left( \frac{\partial E}{\partial V} \right)_T \][/tex]



Answer :

Let's analyze the relationship [tex]\( S = aV^2 \ln E \)[/tex] where [tex]\(a\)[/tex] is a constant, and address each part of the question:

### Part (a)

To find [tex]\(\frac{1}{T}\)[/tex], we need to determine [tex]\(\left(\frac{\partial S}{\partial E}\right)_V\)[/tex].

Given [tex]\( S = aV^2 \ln E \)[/tex],

1. Differentiate [tex]\( S \)[/tex] with respect to [tex]\( E \)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = \frac{\partial}{\partial E} (aV^2 \ln E) \][/tex]

2. The derivative of [tex]\( \ln E \)[/tex] with respect to [tex]\( E \)[/tex] is [tex]\(\frac{1}{E}\)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = aV^2 \cdot \frac{1}{E} \][/tex]
Simplifying,
[tex]\[ \left( \frac{\partial S}{\partial E} \right)_V = \frac{aV^2}{E} \][/tex]

Therefore,
[tex]\[ \frac{1}{T} = \left( \frac{\partial S}{\partial E} \right)_V = \frac{aV^2}{E} \][/tex]

And thus,
[tex]\[ T = \frac{E}{aV^2} \][/tex]

### Part (b)

To find [tex]\(\frac{p}{T}\)[/tex], we need to determine [tex]\(\left(\frac{\partial S}{\partial V}\right)_E\)[/tex].

Given [tex]\( S = aV^2 \ln E \)[/tex],

1. Differentiate [tex]\( S \)[/tex] with respect to [tex]\( V \)[/tex]:
[tex]\[ \left( \frac{\partial S}{\partial V} \right)_E = \frac{\partial}{\partial V} (aV^2 \ln E) \][/tex]

2. Using the product rule:
[tex]\[ \left( \frac{\partial S}{\partial V} \right)_E = 2aV \ln E \][/tex]

Therefore,
[tex]\[ \frac{p}{T} = \left( \frac{\partial S}{\partial V} \right)_E \Rightarrow \frac{p}{T} = 2aV \ln E \][/tex]

This means,
[tex]\[ p = T \cdot (2aV \ln E) \][/tex]

### Part (c)

To find [tex]\(\left( \frac{\partial E}{\partial V} \right)_T\)[/tex], we consider the condition where temperature [tex]\( T \)[/tex] is kept constant. Using [tex]\( T = \frac{E}{aV^2} \)[/tex]:

1. Express [tex]\( E \)[/tex] in terms of [tex]\(T\)[/tex], [tex]\(a\)[/tex], and [tex]\(V\)[/tex]:
[tex]\[ E = TaV^2 \][/tex]

2. Differentiate [tex]\( E \)[/tex] with respect to [tex]\( V \)[/tex] at constant [tex]\( T \)[/tex]:
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = \frac{\partial}{\partial V} (TaV^2) \][/tex]

3. Using the power rule:
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = T \cdot a \cdot 2V \][/tex]
Simplifying,
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = 2aTV \][/tex]

Therefore,
[tex]\[ \left( \frac{\partial E}{\partial V} \right)_T = 2aV \ln E \][/tex]

In conclusion:
(a) [tex]\(\frac{1}{T} = \frac{aV^2}{E}\)[/tex],
(b) [tex]\(\frac{p}{T} = 2aV \ln E\)[/tex],
(c) [tex]\(\left( \frac{\partial E }{\partial V }\right)_T = 2aTV\)[/tex].