Answer :

To solve the system of equations:
[tex]\[ \begin{cases} 4x + 2y = 18 \\ -6y = 4x + 2 \end{cases} \][/tex]

Follow these steps:

1. Rewrite the second equation to isolate one of the variables. Let's isolate [tex]\( x \)[/tex] in the second equation:
[tex]\[ -6y = 4x + 2 \][/tex]
We can rewrite this as:
[tex]\[ 4x = -6y - 2 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{-6y - 2}{4} \][/tex]
Simplify the equation:
[tex]\[ x = \frac{-6y}{4} - \frac{2}{4} \][/tex]
[tex]\[ x = \frac{-3y}{2} - \frac{1}{2} \][/tex]

2. Substitute [tex]\( x \)[/tex] from the second equation into the first equation.
[tex]\[ 4 \left( \frac{-3y}{2} - \frac{1}{2} \right) + 2y = 18 \][/tex]
Distribute the 4:
[tex]\[ 4 \cdot \frac{-3y}{2} + 4 \cdot \frac{-1}{2} + 2y = 18 \][/tex]
[tex]\[ 2(-3y) + 2(-1) + 2y = 18 \][/tex]
[tex]\[ -6y - 2 + 2y = 18 \][/tex]
Combine like terms:
[tex]\[ -6y + 2y = 18 + 2 \][/tex]
[tex]\[ -4y = 20 \][/tex]
Solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{20}{-4} \][/tex]
[tex]\[ y = -5 \][/tex]

3. Substitute [tex]\( y \)[/tex] back into the [tex]\( x \)[/tex]-isolation equation to find [tex]\( x \)[/tex].
[tex]\[ x = \frac{-3(-5)}{2} - \frac{1}{2} \][/tex]
[tex]\[ x = \frac{15}{2} - \frac{1}{2} \][/tex]
Subtract the fractions:
[tex]\[ x = \frac{15 - 1}{2} \][/tex]
[tex]\[ x = \frac{14}{2} \][/tex]
[tex]\[ x = 7 \][/tex]

Thus, the solution to the system of equations is:
[tex]\[ x = 7, \quad y = -5 \][/tex]