Rational & Irrational Numbers

Lesson 3

Sums & Products of Rational & Irrational Numbers

[tex]$-1 \times -1 \times -1 \times -1 \times -1 \times -1$[/tex] is equivalent to [tex]$(-1)^6$[/tex]

A. True
B. False



Answer :

To determine whether [tex]\((-1)^6\)[/tex] is equivalent to [tex]\(-1 \times -1 \times -1 \times -1 \times -1 \times -1\)[/tex], we need to carefully evaluate the expression step-by-step.

First, let's interpret [tex]\((-1)^6\)[/tex]:

[tex]\[ (-1)^6 \text{ means that } -1 \text{ is multiplied by itself 6 times.} \][/tex]

Now, let's explicitly write out the multiplication:

[tex]\[ (-1) \times (-1) \times (-1) \times (-1) \times (-1) \times (-1) \][/tex]

Next, we can group the multiplications in pairs for easier computation:

[tex]\[ ((-1) \times (-1)) \times ((-1) \times (-1)) \times ((-1) \times (-1)) \][/tex]

We know that multiplying two negative numbers results in a positive number:

[tex]\[ (-1) \times (-1) = 1 \][/tex]

So, substituting back we get:

[tex]\[ 1 \times 1 \times 1 = 1 \][/tex]

Therefore,

[tex]\[ (-1) \times (-1) \times (-1) \times (-1) \times (-1) \times (-1) = 1 \][/tex]

Now we compare this result to [tex]\((-1)^6\)[/tex]:

[tex]\((-1)^6\)[/tex] also simplifies to:

[tex]\[ (-1)^6 = 1 \][/tex]

So, yes, [tex]\((-1)^6 = 1\)[/tex] is equivalent to [tex]\(-1 \times -1 \times -1 \times -1 \times -1 \times -1\)[/tex].
Thus, the statement is \textbf{True}.