Answer :
To convert from radians to degrees, you need to use the conversion factor that [tex]\(180\)[/tex] degrees is equivalent to [tex]\(\pi\)[/tex] radians. The formula for converting radians to degrees is as follows:
[tex]\[ \text{degrees} = \text{radians} \times \left( \frac{180}{\pi} \right) \][/tex]
Given the value [tex]\(\frac{29 \pi}{18}\)[/tex] radians, let’s apply the conversion:
[tex]\[ \text{degrees} = \frac{29 \pi}{18} \times \left( \frac{180}{\pi} \right) \][/tex]
In this expression, the [tex]\(\pi\)[/tex] in the numerator and the [tex]\(\pi\)[/tex] in the denominator cancel each other out:
[tex]\[ \text{degrees} = \frac{29 \times 180}{18} \][/tex]
Next, simplify the fraction:
[tex]\[ \text{degrees} = \frac{29 \times 180}{18} = 29 \times 10 = 290 \][/tex]
Hence, [tex]\(\frac{29 \pi}{18}\)[/tex] radians is equal to 290 degrees. Thus, among the given options, the correct answer is:
290
[tex]\[ \text{degrees} = \text{radians} \times \left( \frac{180}{\pi} \right) \][/tex]
Given the value [tex]\(\frac{29 \pi}{18}\)[/tex] radians, let’s apply the conversion:
[tex]\[ \text{degrees} = \frac{29 \pi}{18} \times \left( \frac{180}{\pi} \right) \][/tex]
In this expression, the [tex]\(\pi\)[/tex] in the numerator and the [tex]\(\pi\)[/tex] in the denominator cancel each other out:
[tex]\[ \text{degrees} = \frac{29 \times 180}{18} \][/tex]
Next, simplify the fraction:
[tex]\[ \text{degrees} = \frac{29 \times 180}{18} = 29 \times 10 = 290 \][/tex]
Hence, [tex]\(\frac{29 \pi}{18}\)[/tex] radians is equal to 290 degrees. Thus, among the given options, the correct answer is:
290