If [tex]$f (x)=6 x+3$[/tex] and [tex]$g (x)= f (x)+6$[/tex], what is the value of [tex][tex]$g (8)$[/tex][/tex]?

[tex]\square[/tex] Answer



Answer :

To determine the value of [tex]\( g(8) \)[/tex], let us go through the steps in a detailed manner.

Given the functions:
[tex]\[ f(x) = 6x + 3 \][/tex]
[tex]\[ g(x) = f(x) + 6 \][/tex]

First, we need to evaluate [tex]\( f(8) \)[/tex].

1. Substitute [tex]\( x = 8 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(8) = 6(8) + 3 \][/tex]
[tex]\[ f(8) = 48 + 3 \][/tex]
[tex]\[ f(8) = 51 \][/tex]

Next, we use the value of [tex]\( f(8) \)[/tex] to find [tex]\( g(8) \)[/tex].

2. Substitute [tex]\( f(8) = 51 \)[/tex] into the function [tex]\( g(x) \)[/tex]:
[tex]\[ g(8) = f(8) + 6 \][/tex]
[tex]\[ g(8) = 51 + 6 \][/tex]
[tex]\[ g(8) = 57 \][/tex]

Therefore, the value of [tex]\( g(8) \)[/tex] is [tex]\( 57 \)[/tex].

[tex]\[ \boxed{57} \][/tex]