The cost, [tex]$C$[/tex], of producing [tex]$x$[/tex] widgets is given by the function [tex]$C(x) = 4x - 50$[/tex].

If [tex][tex]$C(w) = 230$[/tex][/tex], what is the value of [tex]$w$[/tex]?

Answer:



Answer :

To solve for the value [tex]\( w \)[/tex] when the cost function [tex]\( C(w) = 230 \)[/tex], follow these steps:

1. Write down the given cost function:
[tex]\[ C(x) = 4x - 50 \][/tex]

2. Set the cost function equal to 230 since we need to find [tex]\( w \)[/tex] such that [tex]\( C(w) = 230 \)[/tex]:
[tex]\[ 4w - 50 = 230 \][/tex]

3. Isolate the term with [tex]\( w \)[/tex] by adding 50 to both sides of the equation:
[tex]\[ 4w - 50 + 50 = 230 + 50 \][/tex]
Simplifying, we get:
[tex]\[ 4w = 280 \][/tex]

4. Solve for [tex]\( w \)[/tex] by dividing both sides of the equation by 4:
[tex]\[ w = \frac{280}{4} \][/tex]
Simplifying, we get:
[tex]\[ w = 70 \][/tex]

Therefore, the value of [tex]\( w \)[/tex] is [tex]\( \boxed{70} \)[/tex].