\begin{tabular}{l|l|l|l|}
\hline
[tex]$\sqrt{3}$[/tex] & [tex]$-\frac{24}{8}$[/tex] & 0 & [tex]$-4.\overline{6}$[/tex] \\
\hline
[tex]$\pi$[/tex] & [tex]$\frac{\pi}{\pi}$[/tex] & [tex]$-\sqrt{36}$[/tex] & [tex]$\frac{\sqrt{81}}{3}$[/tex] \\
\hline
\end{tabular}



Answer :

Let's evaluate each element in the given table step by step.

### Top Row Elements:

1. [tex]\(\sqrt{3}\)[/tex]:
- The square root of 3 is approximately [tex]\(1.7320508075688772\)[/tex].

2. [tex]\(-\frac{24}{8}\)[/tex]:
- Calculate the fraction [tex]\(\frac{24}{8}\)[/tex]:
[tex]\[ \frac{24}{8} = 3 \][/tex]
- Now apply the negative sign:
[tex]\[ -3 \][/tex]
- The value is [tex]\(-3.0\)[/tex].

3. 0:
- This is simply [tex]\(0\)[/tex].

4. [tex]\(-4 . \overline{6}\)[/tex] (representing the recurring decimal [tex]\(-4.6666...\)[/tex]):
- The recurring decimal [tex]\(-4.6666...\)[/tex] can be represented as [tex]\(-4 - 0.6666...\)[/tex]:
[tex]\[ -4.6 \][/tex]

### Bottom Row Elements:

1. [tex]\(\pi\)[/tex]:
- The value of [tex]\(\pi\)[/tex] is approximately [tex]\(3.141592653589793\)[/tex].

2. [tex]\(\frac{\pi}{\pi}\)[/tex]:
- Since any non-zero number divided by itself is [tex]\(1\)[/tex], we get:
[tex]\[ \frac{\pi}{\pi} = 1 \][/tex]

3. [tex]\(-\sqrt{36}\)[/tex]:
- First, calculate the square root of 36:
[tex]\[ \sqrt{36} = 6 \][/tex]
- Now apply the negative sign:
[tex]\[ -6 \][/tex]
- The value is [tex]\(-6.0\)[/tex].

4. [tex]\(\frac{\sqrt{81}}{3}\)[/tex]:
- First, calculate the square root of 81:
[tex]\[ \sqrt{81} = 9 \][/tex]
- Now, divide by 3:
[tex]\[ \frac{9}{3} = 3 \][/tex]
- The value is [tex]\(3.0\)[/tex].

### Final Results:

[tex]\[ \begin{tabular}{l|l|l|l|} \hline 1.7320508075688772 & -3.0 & 0 & -4.6 \\ \hline 3.141592653589793 & 1.0 & -6.0 & 3.0 \\ \hline \end{tabular} \][/tex]